
International Journal of Electronics and Information Engineering, Vol.1, No.1, PP.45-52, Sept. 2014  45 

A Comparative Study of Lossless Compression Algorithm 

on Text Data 
Amit Jain

1
, Kamaljit I. Lakhtaria

2 

(Corresponding author: Amit Jain) 

Department of Computer Science and Engineering
1
 

Sir Padampat Singhania University, Udaipur (Raj.) India 

Department of Computer Science and Engineering
2
 

Sir Padampat Singhania University, Udaipur (Raj.) India 

 (Email: amitscjain@gmail.com) 

(Received Nov. 20, 2013; revised and accepted Jan. 30, 2014) 

 

 

 

Abstract 

With increasing amount of text data being stored rapidly, efficient information retrieval and Storage in the compressed 

domain has become a major concern. Compression is the process of coding that will effectively reduce the total number 

of bits needed to represent certain information. Data compression has been one of the critical enabling technologies for 

the ongoing digital multimedia revolution. There are lots of data compression algorithms which are available to compress 

files of different formats. This paper provides a survey of different basic lossless data compression algorithms on English 

text files: LZW, Huffman, Fixed-length code (FLC), and Huffman after using Fixed-length code (HFLC). All the above 

algorithms are evaluated and tested on different text files of different sizes. To find the best algorithm among above, 

comparison is made in terms of compression: Size, Ratio, Time (Speed), and Entropy. The paper is concluded by the 

decision showing which algorithm performs best over text data. 

Keywords: Data Compression, Huffman Coding, LZW, RLE. 

1   Introduction 

Data compression is a technique that transforms the data from one representation to another new compressed (in bits) 

representation, which contains the same information but with smallest possible size [1]. The size of data is reduced by 

removing the excessive information. The data to be stored or transmitted at reduces storage and/or communication costs. 

When the amount of data to be transmitted is reduced, the effect is that of increasing the capacity of the communication 

channel for more data transmission. Similarly, compressing a file to half of its original size is equivalent to doubling the 

capacity of the storage medium. It may then become feasible to store the data at a higher, thus faster, level of the storage 

hierarchy and reduce the load on the input/output channels of the computer system. 

Benefits of compression 

It provides a potential cost saving associated with sending less data over switched telephone network where cost of call is 

usually based upon its duration. 

It not only reduces storage requirements but also overall execution time. 

It also reduces the probability of transmission errors since fewer bits are transferred. 

It also provides a level of security against illicit monitoring [2]. 

Data compression can be lossless, Lossless data compression makes use of data compression algorithms that allows the 

exact original data to be reconstructed from the compressed data. Lossless data compression is used in many applications. 

For example, it is used in the popular ZIP file format and in the Unix tool gzip. Lossless compression is used when it is 

important that the original and the decompressed data be identical, or when no assumption can be made on whether 

certain deviation is uncritical. Typical examples are executable programs and source code. Some image file formats, 

notably PNG, use only lossless compression [3]. 

Another family of compression is lossy compression.  A lossy data compression method is one where compressing data 

and then decompressing it retrieves data that may well be different from the original, but is "close enough" to be useful in 

some way. Lossy data compression is used frequently on the Internet and especially in streaming media and telephonic 

applications. These methods are typically referred to as codec in this context. Most lossy data compression formats suffer 



International Journal of Electronics and Information Engineering, Vol.1, No.1, PP.45-52, Sept. 2014  46 

from generation loss: repeatedly compressing and decompressing the file will cause it to progressively lose quality. This 

is in contrast with lossless data compression [4]. 

 

Following are some definitions that are used in this research: 

Compression size 

Is the size of the new file in bits after compression is complete? 

 

Compression ratio 

Is a percentage that results from dividing the compression size in bits by the original file size in bits and then multiplying 

the result by 100%. 

 

 
 

Compression time 

Time taken for the compression and the time taken for decompression is considered separately. Compression time is the 

time in millisecond that we need for each symbol or character in the original file for compression, it results from dividing 

the time in millisecond that is needed for compressing the whole file by the number of symbols in the original file and 

scales as millisecond / symbol. If the compression and decompression times of an algorithm are less or up to an 

acceptable level then it implies that the algorithm can be accepted with respective to the given time factor. 

The paper is organized as follows: Section 1 contains a brief Introduction about Compression and its types, Section 2 

presents a brief explanation about different compression techniques, Section 3 has its focus on comparing the 

performance of compression techniques and the final section contains the Conclusion. 

2   Data Compression Techniques 

Various kind of text data compression algorithms have been proposed till date, mainly those algorithms is lossless 

algorithm. This paper examines the performance of the Run Length Encoding Algorithm (RLE), Arithmetic Encoding 

Algorithm, Huffman Encoding Algorithm, Adaptive Huffman Encoding Algorithm and Shannon Fano Algorithm [5]. 

Performance of above listed algorithms for compressing text data is evaluated and compared. 

2.1   Run Length Encoding Technique (RLE) 

One of the simplest compression techniques known as the Run-Length Encoding (RLE) is created especially for data 

with strings of repeated symbols (the length of the string is called a run). The main idea behind this is to encode repeated 

symbols as a pair: the length of the string and the symbol [6]. For example, the string ‘abbaaaaabaabbbaa’ of length 16 

bytes (characters) is represented as 7 integers plus 7 characters, which can be easily encoded on 14 bytes (as for example 

‘1a2b5a1b2a3b2a’). The biggest problem with RLE is that in the worst case the size of output data can be two times more 

than the size of input data. To eliminate this problem, each pair (the lengths and the strings separately) can be later 

encoded with an algorithm like Huffman coding. 

2.2   Huffman Coding 

The Huffman coding algorithm [7] is named after its inventor, David Huffman, who developed this algorithms a student 

in a class on information theory at MIT in1950. It is a more successful method used for text compression. Huffman’s idea 

is to replace fixed-length codes (such as ASCII) by variable-length codes, assigning shorter codewords to the more 

frequently occurring symbols and thus decreasing the overall length of the data. When using variable-length codewords, 

it is desirable to create a (uniquely decipherable) prefix-code, avoiding the need for a separator to determine codeword 

boundaries. Huffman coding creates such a code. Huffman algorithm is almost same as Shannon - Fano algorithm. Both 

the algorithms employ a variable bit probabilistic coding method. Both the algorithms differ slightly in the manner in 

which the binary tree is built. Huffman uses bottom-up approach and Shannon Fano uses Top-down approach. The 

Huffman algorithm is simple and can be described in terms of creating a Huffman code tree.  

The procedure for building this tree is: 

 



International Journal of Electronics and Information Engineering, Vol.1, No.1, PP.45-52, Sept. 2014  47 

1). Start with a list of free nodes, where each node corresponds to a symbol in the alphabet. 

2). Select two free nodes with the lowest weight from the list. 

3). Create a parent node for these two nodes selected and the weight is equal to the weight of the sum of two child nodes. 

4). Remove the two child nodes from the list and the parent node is added to the list of free nodes. 

5). Repeat the process starting from step-2 until only a single tree remains. 

 

After building the Huffman tree, the algorithm creates a prefix code for each symbol from the alphabet simply by 

traversing the binary tree from the root to the node, which corresponds to the symbol. It assigns 0 for a left branch and 1 

for a right branch. The algorithm presented above is called as a semiadaptive or semi-static Huffman coding as it requires 

knowledge of frequencies for each symbol from alphabet. Along with the compressed output, the Huffman tree with the 

Huffman codes for symbols or just the frequencies of symbols which are used to create the Huffman tree must be stored. 

This information is needed during the decoding process and it is placed in the header of the compressed file. 

2.3   Shannon Fano Coding 

Shannon – Fano algorithm is developed by Claude Shannon and R. M. Fano [14, 15]. It is used to encode messages 

depending upon their probabilities. It allots less number of bits for highly probable messages and more number of bits for 

rarely occurring messages. The algorithm is as follows: 

1). From the given list of symbol, develop either frequency or probability table. 

2). Sort the table according to the frequency, with the most frequently occurring symbol at the top. 

3). Divide the table into two halves with the total frequency count of the upper half being as close to the total frequency 

count of the bottom half as possible. 

4). Assign the upper half of the list a binary digit ‘0’ and the lower half a ‘1’. 

5). Recursively apply the steps 3 and 4 to each of the two halves, subdividing groups and adding bits to the codes until 

each symbol has become a corresponding leaf on the tree. 

Generally, Shannon-Fano coding does not guarantee that an optimal code is generated. Shannon – Fano algorithm is 

more efficient when the probabilities are closer to inverses of powers of 2. 

2.4   Arithmetic Encoding 

This encoding technique developed by Jorma Rissane.  It provides extremely high coding efficiency and superior 

Compression to the better-known Huffman algorithm. Arithmetic coding is a method to ensure lossless data compression. 

It is indeed a form of variable length entropy encoding. In the case of other entropy encoding techniques, the input 

message is separated into its component symbols and each symbol is replaced by a code word. But arithmetic coding 

encodes the entire message into a single number, a fraction n where (0.0_n< 1.0) [8].  

The coding algorithm is symbol wise recursive; i.e., it operates upon and encodes (decodes) one data symbol per iteration 

or recursion. On each recursion, the algorithm successively partitions an interval of the number line between 0 and 1, and 

retains one of the partitions as the new interval. Thus, the algorithm successively deals with smaller intervals, and the 

code string, viewed as a magnitude, lies in each of the nested intervals. The data string is recovered by using magnitude 

comparisons on the code string to recreate how the encoder must have successively partitioned and retained each nested 

subinterval. 

2.5   Adaptive Huffman Coding 

The basic Huffman algorithm suffers from the drawback that to generate Huffman codes it requires the probability 

distribution of the input set which is often not available. Moreover it is not suitable to cases when probabilities of the 

input symbols are changing. The Adaptive Huffman coding technique was developed based on Huffman coding first by 

Newton Faller [9] and by Robert G. Gallager [10] and then improved by Donald Knuth [11] and Jefferey S. Vitter [12, 

13]. 

In this method, a different approach known as sibling property is followed to build a Huffman tree. Here, both sender and 

receiver maintain dynamically changing Huffman code trees whose leaves represent characters seen so far. Initially the 

tree contains only the 0-node, a special node representing messages that have yet to be seen. Here, the Huffman tree 

includes a counter for each symbol and the counter is updated every time when a corresponding input symbol is coded. 

Huffman tree under construction is still a Huffman tree if it is ensured by checking whether the sibling property is 

retained. If the sibling property is violated, the tree has to be restructured to ensure this property. Usually this algorithm 

generates codes that are more effective than static Huffman coding. 



International Journal of Electronics and Information Engineering, Vol.1, No.1, PP.45-52, Sept. 2014  48 

 

Storing Huffman tree along with the Huffman codes for symbols with the Huffman tree is not needed here. It is superior 

to Static Huffman coding in two aspects: It requires only one pass through the input and it adds little or no overhead to 

the output. But this algorithm has to rebuild the entire Huffman tree after encoding each symbol which becomes slower 

than the static Huffman coding. 

3   Methodologies 

In order to test the performance of above mentioned compression algorithms e.g. the Run Length Encoding Algorithm, 

Shannon Fano Algorithm, Adaptive Huffman Encoding Algorithm, Huffman Encoding Algorithm and Arithmetic 

Encoding, the algorithm were implemented and tested with a various set of text files. Performances of the algorithm were 

evaluated by computing the compression ratio, compression time. 

The performances of the algorithms depend on the size of the source file and the organization of different symbols and 

text patterns in the source file. Therefore, research work done to include text files of different types such as notepad files, 

source codes, e-books in pdf files, etc, and of different file sizes are used as source files. A chart is drawn in order to 

verify the relationship between the file sizes after compression, the compression and decompression time. 

An algorithm which gives an acceptable saving percentage with minimum time period for compression and 

decompression is considered as the best algorithm.  

4   Results/Comparison 

Five lossless compression algorithms are tested on ten different types, size and contents of text files. All the text files 

were of different size. The first 3 text files were in normal English language. The next 2 files are computer programs, 

having more repeating set of words. The last 5 file are the pdf files written in normal English language. 

Followings are the results for 10 different text files. 

4.1   Results 

Arithmetic coding algorithm result has not been considered as results were not accurate due to overflow problem. Results 

of all other 4 algorithms and their comparisons are given below. 

According to result of Table 1, the compression ratio of RLE algorithm is very low. For the file number 1, 3 and 7, we 

see that the size of compressed file is larger than original file size. Among the given 4 algorithm, we can see that the size 

of compressed file created by Adaptive Huffman algorithm is very less in compare to other algorithm. 

 

Table 1 – Comparison based on compressed file size 

Original File Compressed File Size 

S. No. File Name File Size RLE Adaptive 

Huffman 

Huffman 

Encoding 

Shannon 

Fano 

1 Paper1 22,094 22,251 13,432 13,826 14,127 

2 Paper2 44,355 43,800 26,913 27,357 27,585 

3 Paper3 11,252 11,267 7,215 7,584 7,652 

4 Prog1 15,370 13,620 8,584 8,961 9,082 

5 Prog2 78,144 68,931 44,908 45,367 46,242 

6 Book1 39,494 37,951 22,863 23,275 23,412 

7 Book2 118,223 118,692 73,512 74,027 75,380 

8 Book3 180,395 179,415 103,716 104,193 107,324 

9 Book4 242,679 242,422 147,114 147,659 150,826 

10 Book5 71,575 71,194 44,104 44,586 44,806 

 

From the Table 2, its shows that compression ratio achieved by RLE algorithm is not more than 2% of original file, that 

is not a reasonable compression. In the Adaptive Huffman algorithm, the compression ratio of selected files is within the 

range of 55% to 65%. The compression ratio does not depend on file size but it depends on structure and contents of file. 

In the Huffman Encoding algorithm, the compression ratio range within 58% to 67%. The compression ratios for 

Shannon Fano approach are in the range of 59% to 64% which is slightly equivalent to the Huffman Encoding algorithm. 

So, from the table, we can derive the decision that RLE has lowest compression ratio and Adaptive Huffman has best 

compression ratio, although the compression ratio achieved by Adaptive Huffman is relatively same as achieved by 

Huffman Encoding and Shannon Fano, the difference is not more than 2%. 



International Journal of Electronics and Information Engineering, Vol.1, No.1, PP.45-52, Sept. 2014  49 

 

Table 2 – Comparison based on compression ratio 

Original File Compression Ratio 

S. No. File Name File Size RLE Adaptive 

Huffman 

Huffman 

Encoding 

Shannon 

Fano 

1 Paper1 22,094 100.7106 60.7947 62.5780 63.9404 

2 Paper2 44,355 98.7487 60.6763 61.6773 62.1914 

3 Paper3 11,252 100.1333 64.1219 67.4013 68.0056 

4 Prog1 15,370 88.6141 55.8490 58.3018 59.0891 

5 Prog2 78,144 88.2102 57.4682 58.0556 59.1753 

6 Book1 39,494 96.09307 57.8898 58.9330 59.2798 

7 Book2 118,223 100.3967 62.1807 62.6164 63.7608 

8 Book3 180,395 99.4567 57.4938 57.7582 59.4938 

9 Book4 242,679 99.89409 60.6208 60.8453 62.1504 

10 Book5 71,575 99.4676 61.6192 62.2927 62.6000 

 

From the Table 3, it shows that the compression time of RLE algorithm is relatively low but for the Adaptive Huffman 

algorithm, the compression time is relatively high. The Compression time of Huffman Encoding algorithm and Shannon 

Fano algorithm is relatively low in compare to Adaptive Huffman algorithm but higher than RLE algorithm. 

 

Table 3 – Comparison based on compression time 

Original File Compression Time (ms) 

S. No. File Name File Size RLE Adaptive 

Huffman 

Huffman 

Encoding 

Shannon 

Fano 

1 Paper1 22,094 359 80141 16141 14219 

2 Paper2 44,355 687 223875 54719 55078 

3 Paper3 11,252 469 30922 3766 3766 

4 Prog1 15,370 94 41141 5906 6078 

5 Prog2 78,144 1234 406938 156844 162609 

6 Book1 39,494 141 81856 13044 12638 

7 Book2 118,223 344 526070 134281 153869 

8 Book3 180,395 2766 611908 368720 310686 

9 Book4 242,679 2953 1222523 655514 549523 

10 Book5 71,575 344 231406 42046 42997 

 

From the Table 4, it shows that the decompression time of RLE algorithm is relatively low but for the Adaptive Huffman 

algorithm, the decompression time is relatively high. The decompression time of Huffman Encoding algorithm and 

Shannon Fano algorithm is relatively low in compare to Adaptive Huffman algorithm but higher than RLE algorithm.  

 

Table 4 – Comparison based on decompression ratio 

Original File Decompression Time (ms) 

S. No. File Name File Size RLE Adaptive 

Huffman 

Huffman 

Encoding 

Shannon 

Fano 

1 Paper1 22,094 2672 734469 16574 19623 

2 Paper2 44,355 2663 1473297 20606 69016 

3 Paper3 11,252 2844 297625 6750 8031 

4 Prog1 15,370 2500 406266 9703 9547 

5 Prog2 78,144 17359 2611891 224125 229625 

6 Book1 39,494 2312 1554182 12638 12022 

7 Book2 118,223 1469 1271041 99086 114187 

8 Book3 180,395 2250 1554182 288232 255933 

9 Book4 242,679 1828 2761631 470521 441153 

10 Book5 71,575 1532 633117 34293 32869 

4.2   Comparison of Result 

In order to compare the performance of selected algorithm, the compressed file size, compression ratio, compression and 

decompression time are compared. Figure 1 shows the compression file size of selected 10 files for the entire algorithms. 

The sizes of compressed files are compared with original file size and result is shown in Figure 1. The figure shows that 

saving percentage of RLE algorithm is very less. The compressed files of all other 3 algorithms are relatively similar. The 

compressed file size increased according to original file size that indicates the saving percentage of algorithm depends 

on the redundancy of file. 



International Journal of Electronics and Information Engineering, Vol.1, No.1, PP.45-52, Sept. 2014  50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Compressed file size 

Figure 2 shows the comparison of compression time of all 4 algorithms. Compression time increase with the increase of 

file size. For RLE algorithm the compression time does not depends on the size of file, it remain almost constant. 

Compression time for RLE is very low but for Adaptive Huffman algorithm, the compression time is very high. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Compression time 

Figure 3 shows the decompression time of all the algorithm. The decompression time of RLE algorithm is almost 

negligible and almost same for all the files of different size. the decompression  time of Huffman Encoding and Shannon 

Fano is relatively same but for Adaptive Huffman algorithm, the decompression time is very high.  

5   Conclusions 

We have taken statistical compression techniques for our study to examine the performance of compression algorithm 

over English text data. This text data are available in the form of different kind of text file which contain different text 

patterns. By considering the compression time, decompression time and compression ratio of all the algorithms we have 

drawn the graph and table. From the above comparison and graph, it can be derived that the Huffman Encoding can be 

considered as the most efficient algorithm among selection ones.  

We also note that; the contents of file (i.e. the number of different character or symbols and the frequency for each 

symbol) are effective factor on the performance of the data compression techniques. So, we suggest to make another test 

for the four techniques that we study but on the other sample tested files that contain different number of symbols. 

Data compression stills an important topic for research these days, and has many applications and useful needed. So, we 

suggest continuing searching in this field and trying to combine two techniques in order to get best one.  

 

 



International Journal of Electronics and Information Engineering, Vol.1, No.1, PP.45-52, Sept. 2014  51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3: Decompression time 

 

 

References 

[1] I. M. Pu, Fundamental Data Compression, Elsevier, Britain, 2006. 

[2] Data Compression: Advantages and Disadvantages:  

http://www.esrf.eu/computing/Forum/imgCIF/PAPER/advantages_disadvantages.html, last accessed on Feb. 2013. 

[3] Lossless Compression:  http://en.wikipedia.org/wiki/Lossless_compression, last access on Feb. 2013. 

[4] Lossy Compression: http://en.wikipedia.org/wiki/Lossy_compression, last access on Feb. 2013. 

[5] W. Kesheng, J. Otoo and S. Arie, “Optimizing bitmap indices with efficient compression”, ACM Trans. Database 

Systems, vol. 31, pp. 1-38, 2006. 

[6] E. Blelloch, Introduction to Data Compression, Computer Science Department, Carnegie Mellon University, 2002. 

[7] D. A. Huffman, “A method for the construction of minimumredundancy codes”, Proceedings of the Institute of 

RadioEngineers, vol. 40, no. 9, pp. 1098–1101, 1952. 

[8] A. S. E. Campos, Basic arithmetic coding by Arturo Campos Website, Available from: 

http://www.arturocampos.com/ac_arithmetic.html. (Accessed 02 February 2009) 

[9] N. Faller, “An adaptive system for data compression”, In Record of the 7th Asilornar Conference on Circuits, 

Systems and Computers, IEEE Press, Piscataway, NJ, pp. 593-597, 1973. 

[10] R. G. Gallager, “Variations on a theme by Huffman”, IEEE Transactions on Information Theory, vol. IT-24, no. 6, 

pp. 668-674, Nov. 1978. 

[11] D. E. Knuth, “Dynamic Huffman coding”, Journal of Algorithms, vol. 6, no. 2, pp. 163-180, June 1985. 

[12] J. S. Vitter, “Design and analysis of dynamic Huffman codes”, Journal of the ACM, vol. 34, no. 4, pp. 825-845, 

October 1987. 

[13] J. S. Vitter, “Dynamic Huffman coding”, ACM Transactions on Mathematical Software, vol. 15, no. 2, pp. 158-167, 

June 1989. 

[14] R. M. Fano, “The Transmission of Information”, Technical Report No. 65, Research Laboratory of Electronics, 

M.I.T., Cambridge, Mass.; 1949. 

[15] K. Lakhtaria, "Protecting computer network with encryption technique: A Study." Ubiquitous Computing and 

Multimedia Applications. Springer Berlin Heidelberg, pp. 381-390, 2011. 

[16] C. E. Shannon, “A mathematical theory of communication,” Bell Sys. Tech. Jour., vol. 27, pp. 398-403, July 1948. 

 

Amit Jain is working in CSE Department, Sir Padampat Singhania University, Udaipur, India. He is having 17 years of 

teaching experience. He has taught to post-graduate and graduate students of engineering. He is pursuing Ph.D. in 

Computer Science, in the area of Information Security. He has presented 3 papers in International Journal, 5 papers in 

International Conference and 8 papers in National Conference.   

 

Dr. Kamaljit I Lakhtaria is working in CSE Department, Sir Padampat Singhaniya University, India.  He obtained Ph. D. 

http://www.esrf.eu/computing/Forum/imgCIF/PAPER/advantages_disadvantages.html
http://en.wikipedia.org/wiki/Lossless_compression
http://en.wikipedia.org/wiki/Lossy_compression


International Journal of Electronics and Information Engineering, Vol.1, No.1, PP.45-52, Sept. 2014  52 

in Computer Science; area of Research is “Next Generation Networking Service Prototyping & Modeling”. He holds an 

edge in Next Generation Network, Web Services, MANET, Web 2.0, Distributed Computing. His inquisitiveness has 

made him present 18 Papers in International Conferences, 28 Paper in International Journals. He is author of 8 Reference 

Books. He is member of Life time member ISTE, IAENG. He holds the post of Editor, Associate Editor in many 

International Research Journal. He is reviewer in IEEE WSN, Inderscience and Elsevier Journals. 

 

 


