An Efficient Biometrics-based Remote User Authentication Scheme Using Smart Cards

Chun-Ta Li\(^1\) and Min-Shiang Hwang\(^2\)

\(^1\) Department of Information Management, Tainan University of Technology, 529 Jhong Jheng Road, Yongkang, 710 Tainan, Taiwan, R.O.C.

th0040@mail.tut.edu.tw

\(^2\) Department of Management Information Systems, National Chung Hsing University, 250 Kuo Kuang Road, 402 Taichung, Taiwan, R.O.C.

mshwang@nchu.edu.tw

Abstract. In this paper, we propose an efficient biometric-based remote user authentication scheme using smart cards, in which the computation cost is relatively low compared with other related schemes. The security of the proposed scheme is based on the one-way hash function, biometrics verification and smart card. Moreover, the proposed scheme enables the user to change their passwords freely and provides mutual authentication between the users and the remote server. In addition, many remote authentication schemes use timestamps to resist replay attacks. Therefore, synchronized clock is required between the user and the remote server. In our scheme, it does not require synchronized clocks between two entities because we use random numbers in place of timestamps.

Keywords: Biometrics; Cryptography; User authentication; Smart cards; Security.

1 Introduction

In 1981, Lamport [30] first proposed a remote authentication scheme in which the remote server could authenticate the remote user based on identity and password over an insecure network. However, Lamport’s scheme has to store verification tables. In 1998, Jan and Chen [26] proposed a password authentication scheme without storing verification tables in the system. It is ineffective for the server to maintain the verification tables due to the size of the verification tables are proportional to the number of users. Later, Hwang and Li [24] proposed a new remote user authentication scheme using smart cards based on ElGamal’s [7] public-key cryptosystem in 2000. The Hwang-Li scheme has to maintain only one secret key and no password table is required to keep in the system. Note that the smart card is a temper-resistant device and the primary properties are: (1) it is unable to get the information in it unless the user passes the verification; (2) it will have great trouble in performing complex computations for the smart card in each ongoing session due to its constrained computational capability.
In traditional remote identity-based remote authentication schemes [18, 25, 29, 32, 34], the security of the remote user authentication is based on the passwords, but simple passwords are easy to break by simple dictionary attacks. So, the cryptographic secret keys are used as they are long and random (e.g., 128 bits for the advanced encryption standard, AES [1, 5]). However, the cryptographic keys are difficult to memorize and they must be stored somewhere. Thus, they are expensive to maintain. Furthermore, both passwords and cryptographic keys are unable to provide non-repudiation because they can be forgotten, lost or when they are shared with other people, there is no way to know who the actual user is. Therefore, biometric keys [17, 27, 28, 33] are proposed which are based on physiological and behavioral characteristics of persons such as fingerprints, faces, irises, hand geometry, and palmprints etc. In the following, we shall present some advantages of biometric keys as follows:

- Biometric keys can not be lost or forgotten.
- Biometric keys are very difficult to copy or share.
- Biometric keys are extremely hard to forge or distribute.
- Biometric keys can not be guessed easily.
- Someone’s biometrics is not easy to break than others.

Accordingly, biometrics-based authentication is inherently more reliable than traditional password-based authentication. Recently, in 2002, Lee et al. [31] proposed a fingerprint-based remote user authentication scheme using smart cards, but this scheme could not withstand impersonation attack [9, 33]. In 2004, Lin et al. [33] further proposed a flexible biometrics remote user authentication scheme. However, this scheme is susceptible to the server spoofing attack [27]. In this article, we shall present a secure and efficient biometric-based remote authentication scheme and compare it with other related schemes in terms of functionality requirements and computation costs. To do so, we shall list some essential requirements and the goal of the proposed scheme must satisfy these requirements of a secure user authentication scheme which will be mentioned in Section 2.

The remainder of this paper is organized as follows: Section 2 shows some related requirements for our scheme. In Section 3, our biometric-based authentication scheme is proposed. The security and the efficiency of our scheme will be analyzed in Section 4. Finally, we conclude this article in Section 5.

2 Essential Requirements

According to the previous researches, in this section, we list some essential requirements for evaluating a new remote user authentication scheme. The following criteria are crucial and these requirements solve all problems in smart card-oriented schemes. For a protection mechanism for remote user authentication, each requirement is a fundamental and independent requirement. The purpose of this paper is to propose a new remote user authentication scheme to meet the following essential requirements so as to establish a standard for our biometrics-based remote user authentication scheme.
Security requirements:
- Withstand masquerade attacks: An adversary may try to masquerade as a legitimate user to communicate with the valid system or masquerade as a valid system to communicate with the legal users [11, 16, 20, 21, 36, 38].
- Withstand replay attacks: An attacker would try to hold up the messages between two communication parties and impersonating other legal party to replay the fake messages for further deceptions [22].
- If user loses the smart card, the secret information and the password can not be derived by adversary [36].
- Withstand parallel session attacks [10].

Functionality requirements:
- Allow users to freely choose and change the passwords in local without notifying the server, thus, it can decrease the communication overheads and some possible attacks between two communication parties over an insecure network [39].
- Provide mutual authentication between two communication parties [13, 14, 19, 35].
- Without storing password tables and identity tables in the system [37].
- Without synchronized clock: Some authentication schemes used timestamps to prevent replaying attacks. However, it may cause some problems by employing timestamps [4, 8].
- Provide non-repudiation because of employing personal biometrics [2, 3, 6, 23].

Performance requirements:
- Efficiency (With low computation cost): In general, the smart card usually does not support powerful computational capability. Hence, the exponential operation will not be used in our proposed scheme because its computational cost is relatively high [12, 15].

3 The Proposed Scheme

In this section, we shall present our biometrics-based remote user authentication scheme. The notations in Table 1 are used in the proposed scheme.

There are three phases in our scheme including registration phase, login phase and authentication phase. Detailed steps of these phases of the proposed scheme are described as follows and are in Figure 1.

3.1 Registration Phase

Before the remote user logins to the system, the user needs to perform the following steps.

Step 1: Firstly, the user inputs his/her personal biometrics, B_i, on the specific device and offering the password, PW_i, identity of the user, ID_i to the registration center in person.
Registration Phase

1. **C_i** sends **R_i** **ID_i**, **B_i**, **PW_i**
2. **C_i** computes **r_i** and **e_i**
3. **C_i** sends **R_i** **ID_i**, **h(·)**, **f_i**, **e_i**

Login Phase

1. **C_i** inserts the smart card and inputs **B_i**
2. **C_i** verifies **h(B_i)**? = **f_i**
3. If it holds, **C_i** inputs **PW_i**
4. Computes **r_i'** = **h(PW_i||f_i)**
 - Computes **M_1** = **e_i ⊕ r_i'**
 - Computes **M_2** = **M_1 ⊕ Rc**
5. **ID_i**, **M_2**

Authentication Phase

1. **C_i** checks the format of **C_i**’s **ID_i**
2. If above holds, **S_i** computes
 - **M_3** = **h(ID_i||Xs)**
 - **M_4** = **M_2 ⊕ M_3**
 - **M_5** = **M_4 ⊕ Rs**
 - **M_6** = **h(M_5||M_4)**
 - **M_6**, **M_5**
3. **M_6**, **M_5**
4. **C_i** verifies **M_6**? = **h(M_5||Rc)**
5. If above holds, **C_i** computes
 - **M_7** = **M_5 ⊕ M_3**
 - **M_8** = **h(M_5||M_7)**
6. **M_8**
7. **S_i** verifies **M_8**? = **h(M_5||Rs)**
8. If it holds, **S_i** accepts **C_i**’s login request
9. Otherwise, **S_i** rejects **C_i**’s login request

Fig. 1. The proposed scheme
Table 1. Notations used in the proposed scheme

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_i)</td>
<td>Client/User</td>
</tr>
<tr>
<td>(S_i)</td>
<td>Server</td>
</tr>
<tr>
<td>(R_i)</td>
<td>Trust registration center</td>
</tr>
<tr>
<td>(ID_i)</td>
<td>Identity of user</td>
</tr>
<tr>
<td>(PW_i)</td>
<td>Password shared between (C_i) and (S_i)</td>
</tr>
<tr>
<td>(B_i)</td>
<td>Biometric template of the user</td>
</tr>
<tr>
<td>(h(\cdot))</td>
<td>One-way hash function</td>
</tr>
<tr>
<td>(X_s)</td>
<td>A secret information maintained by the server</td>
</tr>
<tr>
<td>(R_c)</td>
<td>A random number chosen by the client</td>
</tr>
<tr>
<td>(R_s)</td>
<td>A random number chosen by the server</td>
</tr>
<tr>
<td>(</td>
<td></td>
</tr>
<tr>
<td>(\oplus)</td>
<td>XOR operation</td>
</tr>
</tbody>
</table>

Step 2: Next, the registration center computes \(r_i \) and \(e_i \) as follows:

\[
\begin{align*}
 r_i &= h(PW_i \parallel f_i) \\
 e_i &= h(ID_i \parallel X_s) \oplus h(PW_i \parallel f_i)
\end{align*}
\]

where \(f_i = h(B_i) \) and \(X_s \) is a secret information generated by the server. Note that the secret information \(X_s \) of server node and the passwords of corresponding users are undisclosed to any others for securing all future authentications.

Step 3: Lastly, the registration center stores \((ID_i, h(\cdot), f_i, e_i)\) on the user’s smart card and sends it to the user via a secure channel.

3.2 Login Phase

Whenever the user wants to logon to the remote server, he/she must perform the following steps.

Step 1: First, \(C_i \) inserts his/her smart card into the card reader and inputs the personal biometrics, \(B_i \), on the specific device to verify the user’s biometrics.

Step 2: Then, verifies \(h(B_i) \overset{!}{=} f_i \).

Step 3: If the above mentioned does not hold, it means \(C_i \) does not pass the biometric verification and the remote user authentication scheme is terminated. On the contrary, if it holds, \(C_i \) passes the biometric verification. Then \(C_i \) inputs the \(PW_i \) to perform the following operations in Step 4.

Step 4: After receiving \(C_i \)’s password, the smart card will compute the following messages:

\[
\begin{align*}
 r_i' &= h(PW_i \parallel f_i) \\
 M_1 &= e_i \oplus r_i' = h(ID_i \parallel X_s) \\
 M_2 &= M_1 \oplus R_c
\end{align*}
\]
where \(Rc \) is a random number generated by the user. For this step, the random value \(Rc \) is introduced to mask the hash of the secret value \(h(ID_i || X_s) \).

Step 5: Finally, \(C_i \) sends the message \((ID_i, M_2)\) to the remote server, \(S_i \).

3.3 Authentication Phase

After receiving the request login message, \(S_i \) will perform the following steps to authenticate that the user is legal or not.

Step 1: First, \(S_i \) checks whether the format of \(ID_i \) is valid or not.

Step 2: If Step 1 holds, \(S_i \) then computes the following messages to provide mutual authentication between \(C_i \) and \(S_i \). For this step, \(M_4 \) is in fact the random value \(Rc \) of the client \(C_i \) and that only \(S_i \) can unmask the value, because only it can compute \(h(ID_i || X_s) \).

\[
\begin{align*}
 M_3 &= h(ID_i || X_s) \\
 M_4 &= M_2 \oplus M_3 = Rc \\
 M_5 &= M_3 \oplus Rs \\
 M_6 &= h(M_2 || M_4)
\end{align*}
\]

Step 3: Then, \(S_i \) sends the message \((M_5, M_6)\) to \(C_i \).

Step 4: After receiving \(S_i \)'s message, \(C_i \) first verifies whether \(M_6 \neq h(M_2 || Rc) \).

Step 5: If it holds, \(C_i \) believes that \(S_i \) is authenticated and then computes the following messages to provide mutual authentication between \(S_i \) and \(C_i \). For this step, \(M_7 \) is in fact the random value \(Rs \) of the server \(S_i \) and only the client, which knows \(M_1 = h(ID_i || X_s) \) can send back the correct hashed value of \(M_8 = h(h(ID_i || X_s) \oplus Rs) || Rs) \).

\[
\begin{align*}
 M_7 &= M_5 \oplus M_1 = Rs \\
 M_8 &= h(M_5 || M_7)
\end{align*}
\]

Step 6: \(C_i \) sends the message \(M_8 \) to \(S_i \).

Step 7: After receiving \(C_i \)'s message, \(S_i \) verifies whether \(M_8 \neq h(M_5 || Rs) \).

Step 8: If the above mentioned holds, \(S_i \) accepts \(C_i \)'s login request.

Step 9: Otherwise, \(S_i \) rejects \(C_i \)'s login request.

3.4 Change Password

According to the above-mentioned requirements, user \(C_i \) can freely change the password, \(PW_i \), to a new password, \(PW_i^n \). First, \(C_i \) inserts the smart card and inputs his/her biometric template, \(B_i \) on the specific device to verify the user’s biometrics. If \(C_i \) passes the biometric verification \((h(B_i) = f_i) \), then he/she inputs the old password, \(PW_i \), and the new password, \(PW_i^n \). Next, the smart card will perform the following operations:

\[
\begin{align*}
 r_i' &= h(PW_i || f_i) \\
 e_i' &= e_i \oplus r_i' = h(ID_i || X_s) \\
 e_i^n &= e_i' \oplus h(PW_i^n || f_i)
\end{align*}
\]

Finally, replace the \(e_i \) with \(e_i^n \) on the smart card.
4 Security Analysis and Comparisons

In this section, we will analyze the security of the proposed scheme and further compare Lin-Lai’s scheme [33], Lee-Chiu’s scheme [32], Yoon et al.’s scheme [40], Chang et al.’s scheme [4], Khan et al.’s scheme [28], and our scheme in terms of functionality and efficiency.

4.1 Security Analysis

The security of our scheme is analyzed in the following:

– In our scheme, the remote server only has to maintain a secret information, X_s, without storing the password tables. An attack may try to derive X_s from the intercepted messages, (ID_i, M_2), (M_5, M_6), and M_8. But it is computationally infeasible because of the property of the one-way hashing function and random values.

– If the legal user lost his/her smart card, it is difficult for any adversary to derive or change the password because he/she can not pass the biometric verification. On comparing adversary’s biometric template with the biometric template stored on the smart card, the illegal request will be rejected. Besides, the secret information stored on the smart card is as secure as the password.

– An illegal user may try to fabricate fake request login messages to cheat the remote server into believing it is a legal remote login request (masquerade attack) in the login phase. It does not work unless he/she could modify M_2 correctly. However, it is difficult for the user to modify M_2 without knowing M_1 and the random number Rc. In addition, during the login phase, if a fake user intercepts the message (ID_i, M_2) and modifies the message to $(ID_i, M_2 \oplus Rx)$, where Rx is a random number chosen by the fake user. For the server, this is a valid request with a different random number $Rc \oplus Rx$. However, this attack is still not work because the fake user is unable to compute the message M_8 to convince S_i unless he/she knows C_i’s random number Rc.

– If the illegal user intercepts the message (ID_i, M_2) from C_i and try to masquerade as the remote server. It is impossible for the user to compute the message M_6 to convince C_i unless he/she knows the secret information X_s. Furthermore, in our protocol, the server does not store all random values ever sent by the client.

– In our proposed protocol, the server does not store all random values ever sent by the client and parallel session attack is completely solved by generating the random number between user and remote server. During login phase, user sends login message (ID_i, M_2) to the remote server. If an attacker resends it to the remote server, it will be verified in steps 1 and 2 of the authentication phase. However, remote server responses differential Rs in every session. As a result, parallel session attempt will be failed in the step 5 of the authentication phase, because an attacker is unable to compute M_3.,
derive the valid value of \(Rs \) and response mutual authentication message \(M_8 \) to the remote server.

Table 2. Comparison with other related schemes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in registration phase</td>
<td>(1H+1E)</td>
<td>(2H+1E)</td>
<td>(1H)</td>
<td>(2H)</td>
<td>(2H)</td>
<td>(3H)</td>
</tr>
<tr>
<td>in login phase</td>
<td>(2H+2E)</td>
<td>(2H+1E)</td>
<td>(1H)</td>
<td>(2H)</td>
<td>(2H)</td>
<td>(2H)</td>
</tr>
<tr>
<td>in authentication phase</td>
<td>(1H+2E)</td>
<td>(2H)</td>
<td>(4H)</td>
<td>(6H)</td>
<td>(5H)</td>
<td>(5H)</td>
</tr>
<tr>
<td>Change password</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Mutual authentication</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Without synchronized clocks</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Provide non-repudiation</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes. H: One-way hashing operation; E: Exponential operation.

4.2 Performance Comparisons

In the following, the comparisons of our scheme and other related schemes are summarized in Table 2. From Table 2, Lin-Lai’s scheme and Lee-Chiu’s scheme requires some exponential operations because the security of their schemes is based on solving discrete logarithm problems. However, in terms of efficiency, the exponential computation is very high-powered and time-consuming. Contrary to ours, Yoon et al.’s, Chang et al.’s, and Khan et al.’s scheme, the computation costs are very low, only a few hashing function computations are needed. Therefore, this feature makes our scheme effective.

4.3 Functionality Comparisons

For functionality comparisons, though Chang et al.’s scheme allows users to freely choose the initial passwords during the registration phase, their scheme does not provide the functionality of change password in local. Thus, the user must notify the server if he/she wants to change the password. It will increase the communication overheads and some possible attacks between the user and the remote server over an insecure network. In addition, from Table 2 shows, only ours, Yoon et al.’s, Chang et al.’s, and Khan et al.’s scheme provide mutual authentication between two communication parties. However, Yoon et al.’s and
Chang et al.’s scheme does not provide non-repudiation and ours and Khan et al.’s scheme achieves non-repudiation because of employing personal biometrics.

On the other hand, Yoon et al.’s and Khan et al.’s schemes required synchronized clocks between the user and the remote server because of using timestamps. In fact, it is fairly complicated to achieve time concurrency and some disadvantages exist such as the delivery latency and the different time zone, and so forth [4, 8]. As a result, in our scheme, it not only provides non-repudiation, it also does not require synchronized clocks because we use random numbers in place of timestamps.

5 Conclusions

In this article, an efficient biometrics-based remote user authentication scheme is proposed. By comparison with other related schemes, the proposed scheme not only keeps good properties (e.g. without synchronized clock, freely changes password, low computation costs, mutual authentication) but also provides non-repudiation because the characteristics of personal biometrics. Thus, it is suitable for various authentication cryptosystems in distributed computing environments since it provides security, reliability, and efficiency.

References

