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Abstract

The linear complexity of a key stream sequence in a
stream cipher is an important cryptographic property. In
this paper, we discuss the linear complexity of two classes
of binary interleaved sequences of period 4N with low au-
tocorrelation. Results show that the linear complexity of
these two classes of sequences is large enough to resist the
Berlekamp-Massey algorithm.
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1 Introduction

Sequences with good autocorrelation and large linear
complexity have many applications in cryptography and
communication systems [3, 10,14].

Given two binary sequences a = (at)
∞
t=0 and b = (bt)

∞
t=0

of period n defined on the Galois field GF (2), the periodic
correlation between them is defined by

Ra,b(τ) =

n−1∑
t=0

(−1)a(t)+b(t+τ), 0 ≤ τ < n,

where the addition t+ τ is performed modulo n. If a = b,
Ra,b(τ) is called the (periodic) autocorrelation function
of a, denoted by Ra(τ), otherwise, Ra,b(τ) is called the
(periodic) cross-correlation function of a and b [13].

Binary sequences with optimal autocorrelation values
can be classified into four types as follows according
to the remainders of n modulo 4: (1) Ra(τ) = −1 if
n ≡ 3 mod 4; (2) Ra(τ) ∈ {−2, 2} if n ≡ 2 mod 4; (3)
Ra(τ) ∈ {1,−3} if n ≡ 1 mod 4; (4) Ra(τ) ∈ {0,−4} or
{0, 4} if n ≡ 0 mod 4, where 0 < τ < n [7]. In the first
case, Ra(τ) is often called ideal autocorrelation. For the
last type, if Ra(τ) ∈ {0,±4}, Ra(τ) is called almost opti-
mal autocorrelation. For more details about optimal au-
tocorrelation, the reader is referred to [1,10,12]. However,

in applications, sequences with low autocorrelation values
rather than optimal autocorrelation values also play im-
portant roles.

The linear complexity of a sequence is often described
in terms of the shortest linear feedback shift register
(LFSR) that generates the sequence. Generally speak-
ing, for a sequence with the linear complexity is LC(s), if
2LC(s) consecutive elements of the sequence are known,
then we can find the linear recurrence relation of the se-
quence by solving homogeneous linear equations or B-M
algorithm. Thus the whole sequence can be recovered
easily [6, 15]. So the linear complexity of a key sequence
must be large enough to oppugn the known-plaintext at-
tack [2, 5].

In [9], we have proposed two new constructions of bi-
nary interleaved sequences of period 4N as the following:

a = I(s1, Ld(s1), s2, Ld(s2)). (1)

a = I(s1, Ld(s1), s2, Ld(s2)). (2)

where s1 is the even decimated sequence of a binary ideal
autocorrelation sequence s of period N , s2 is the odd dec-
imated sequence of the sequence s, s1 and s2 are the
complement sequences of s1 and s2 respectively, and d
is an arbitrary integer. We have proved that both these
two interleaved sequences have low autocorrelation, espe-

cially, when d =
N + 1

4
, the sequence a in Equation (2)

is a binary sequence with almost optimal autocorrelation.
Ideally, a key stream sequence need to combine the low
autocorrelation property with large linear complexity. So
we continue to discuss the linear complexity of these two
classes of sequences in this paper.

The remainder of this paper is organized as follows.
Section 2 introduces some related definitions and lemmas
which would be used later. In Section 3, we give both the
minimal polynomials and linear complexity of these two
sequences defined by Equations (1) and (2). Conclusions
and remarks are given in Section 4.
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2 Preliminaries

Definition 1. [8] Let {a0, a1, · · · , aT−1} be a set of T
sequences of period N . An N × T matrix U is formed by
placing the sequence ai on the ith column, where 0 ≤ i ≤
T − 1. Then one can obtain an interleaved sequence u
of period NT by concatenating the successive rows of the
matrix U . For simplicity, the interleaved sequence u can
be written as

u = I(a0, a1, · · · , aT−1),

where I denotes the interleaved operator.

Definition 2. [8] Let s = (si)
∞
i=0 be a sequence over a

Galois field GF (2). A polynomial of the form

f(x) = 1 + c1x+ c2x
2 + · · ·+ crx

r ∈ GF [x]

is called the characteristic polynomial of the sequence s if

si = c1si−1 + c2si−2 + · · ·+ crsi−r,∀i ≥ r.

Among all the characteristic polynomials of s, the
monic polynomial ms(x) with the lowest degree is called
its minimal polynomial. The linear complexity of s is de-
fined as the degree of ms(x), which is described as LC(s).

Definition 3. [8] Let s = (si)
∞
i=0 be a binary sequence

of period N and define the sequence polynomial

s(x) = s0 + s1x+ · · ·+ sN−1x
N−1. (3)

Then, its minimal polynomial and linear complexity
can be determined by Lemma 1.

Lemma 1. [14] Assume s is a sequence of period N
with the sequence polynomial s(x) defined by Equation (3).
Then the minimal polynomial is

ms(x) =
xN − 1

gcd(xN − 1, s(x))
;

the linear complexity is

LC(s) = N − deg(gcd(xN − 1, s(x))),

where gcd(xN − 1, s(x)) denotes the greatest common di-
visor of xN − 1 and s(x).

For the sequence polynomial, we have the following
results.

Lemma 2. [11] Let a be a binary sequence of period N ,
and sa(x) be its sequence polynomial. Then

1) sb(x) = xN−τsa(x), if b = Lτ (a);

2) sb(x) = sa(x)+
xN − 1

x− 1
, if b is the complement sequ

ence of a;

3) su(x) = sa(x4)+xsb(x
4)+x2sc(x

4)+x3sd(x
4), if u =

I(a, b, c, d).

Lemma 3. Let N be an odd integer. The even decimated
sequence and odd decimated sequence of a binary sequence
of period N s = (si)

∞
i=0 is denoted by s1 = (s2t)

∞
t=0 and

s2 = (s2t+1)∞t=0, where 2t and 2t+1 are performed modulo
N . Let ss1(x), ss2(x) denote the sequence polynomials of
s1, s2 respectively. Then we have

ss1(x4) + x2ss2(x4) = (1 + x2N )s(x2). (4)

Proof By Equation (3), ss1(x), ss2(x) can be represented
as the following

ss1(x) = s0 + s2x+ s4x
2 + · · ·+ s(2(N−1))x

N−1

=

N−1∑
t=0

s2tx
t,

ss2(x) = s1 + s3x+ · · ·+ s(2(N−1)+1)x
N−1

=

N−1∑
t=0

s2t+1x
t.

So we have

ss1(x4) + x2ss2(x4)

= s0 + s1x
2 + · · ·+ sN−2x

2(N−2)

+sN−1x
2(N−1) + s0x

2N

+s1x
2(N+1) + · · ·+ sN−1x

2(2N−1)

= (1 + x2N )s(x2).

It should be noted that we take the Legendre sequence
with period of N ≡ 3 mod 8 as the base sequence of inter-
leaved structures in Equations (1) and (2). So we have to
introduce some preliminaries about Legendre sequences.

Definition 4. [4] Let Q and NQ denote all the quadratic
residues and quadratic nonresidues in ZN respectively,
where N is a prime. The Legendre sequence l = (li)

∞
i=0 of

period N is defined as

l(i) =

 0 or 1, if i = 0;
1, if i ∈ Q;
0, if i ∈ NQ.

Specifically, l is called the first type Legendre sequence
if l(0) = 1 otherwise the second type Legendre sequence.
For simplicity, we employ l and l′ to describe the first and
second type of Legendre sequences respectively.

Let s be the second type Legendre sequence of period
N . Then by Equation (3), we have s(x) =

∑
i∈Q

xi.

Lemma 4. [4] Let β be a primitive Nth root of unity
over the field GF (2m) that is the splitting field of xN − 1.
Then we obtain the following basic facts:

1) (Q, ·) is a group with |Q| = (N − 1)/2 and q ·NQ =
NQ for any q ∈ Q, where · denotes integer multipli-
cation modulo N .

2) s(βq) = s(β) for any q ∈ Q, and s(βn) = 1 + s(β)
for any n ∈ NQ.
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3) s(β) ∈ {0, 1} if and only if 2 ∈ Q.

4) 2 ∈ Q if and only if N = 8t+ 1 for some t.

Let q(x) =
∏
q∈Q

(x − βq) and n(x) =
∏

n∈NQ

(x − βn).

Then

xN − 1 = (x− 1)q(x)n(x).

3 Minimal Polynomial and Linear
Complexity

3.1 The Linear Complexity of the First
Class Interleaved Sequences

Theorem 1. Let a = I(s1, Ld(s1), s2, Ld(s2)) be a binary
interleaved sequence of period 4N defined by Equation (1),
where the base sequence s is a Legendre sequence of period

N ≡ 3 mod 8, d 6= N + 1

4
. Then the minimal polynomial

is ma(x) = x2N +1, and the linear complexity is LC(a) =
2N .

Proof By Lemmas 2 and 3, sa(x) can be written as

sa(x)

= ss1(x4) + xsLd(s1)(x
4) + x2ss2(x4) + x3sLd(s2)(x

4)

= ss1(x4) + x4(N−d)+1(ss1(x4) +
x4N − 1

x4 − 1
)

+x2ss2(x4) + x4(N−d)+3(ss2(x4) +
x4N − 1

x4 − 1
)

= (x4N−4d+1 + 1)ss1(x4) + (x4N−4d+3 + x2)ss2(x4)

+
x4N−1

x4 − 1
(x4N−4d+1 + x4N−4d+3)

= (x4N−4d+1 + 1)(ss1(x4) + x2ss2(x4))

+x4N−4d+1(1 + x2)
x4N − 1

x4 − 1

= (x4N−4d+1 + 1)(x2N + 1)s(x2)

+x4N−4d+1(1 + x2)
x4N − 1

x4 − 1
.

Since the finite field GF (2m) with characteristic 2 is
the splitting field of xN −1, we have x4N −1 = (xN −1)4.

Then by Lemma 1

gcd(x4N − 1, sa(x)) (5)

= (x2 − 1)gcd

(
x4N − 1

x2 − 1
, x4N−4d+1x

4N − 1

x4 − 1

+(x4N−4d+1 + 1)s(x2)
x2N − 1

x2 − 1

)
= (x2 − 1)gcd

(
x4N − 1

x4 − 1
,

(x4N−4d+1 + 1)s(x2)
x2N − 1

x2 − 1

)
= (x2 − 1)

x2N − 1

x2 − 1
gcd

(
x2N − 1

x2 − 1
,

(x4N−4d+1 + 1)s(x2)

)
.

Next, we analyse the above Equation (5). By Lemma 4,
we have

x2N − 1

x2 − 1
= q2(x)n2(x) =

∏
q∈Q

(x− βq)2
∏

n∈NQ

(x− βn)2.

So we only need consider whether x − βj is a divisor of
(x4N−4d+1 + 1)s(x2), where 1 ≤ j < N . Since the base
sequence s is a Legendre sequence of period N ≡ 3 mod 8,
by 2), 3) and 4) in Lemma 4, we have s(β) /∈ {0, 1},
s(βq) = s(β) for any q ∈ Q, and s(βn) = 1 + s(β) for
n ∈ N . So s(βj) 6= 0 for any 1 ≤ j < N . s(x) ∈ GF (2)[x].
Thus

s(x2) = s(x)2.

Then x− βj is not a divisor of s(x2), where 1 ≤ j < N .

Besides, since d 6= N + 1

4
, 4N −4d+1 6≡ 0 mod N and

1 + (βj)4N−4d+1 6= 0, 1 ≤ j < N . Hence x− βj is not the
divisor of 1 + x4N−4d+1, where 1 ≤ j < N . Then

gcd

(
x2N − 1

x2 − 1
, (x4N−4d+1 + 1)s(x2)

)
= 1.

According to the above discussion, it follows that

gcd

(
x4N − 1, sa(x)

)
= x2N − 1.

Then by Lemma 1, the minimal polynomial of the se-
quence a defined in Theorem 1 is ma(x) = x2N − 1, and
the linear complexity is LC(a) = 2N .

Hence, we complete the proof of Theorem 1.

3.2 The Linear Complexity of the Second
Class Interleaved Sequences

Theorem 2. Let a = I(s1, Ld(s1), s2, Ld(s2)) be a binary
interleaved sequence of period 4N defined by Equation (2),
where the base sequence s is a Legendre sequence of period

N ≡ 3 mod 8, d 6= N ± 1

4
. Then the minimal polynomial

is ma(x) = (x− 1)(x2N − 1), and the linear complexity is
LC(a) = 2N + 1.
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Proof By Lemmas 1 and 2, sa(x) can be written as

sa(x)

= ss1(x4) + xsLd(s1)(x
4) + x2ss2(x4) + x3sLd(s2)(x

4)

= ss1(x4) + xLd(ss1(x4) +
x4N − 1

x4 − 1
)

+x2(ss2(x4) +
x4N − 1

x4 − 1
) + x4N−4d+3ss2(x4)

= (x4N−4d+1 + 1)ss1(x4) + (x4N−4d+3 + x2)ss2(x4)

+
x4N−1

x4 − 1
(x4N−4d+1 + x2)

= (x4N−4d+1 + 1)(ss1(x4) + x2ss2(x4))

+(x4N−4d+1 + x2)
x4N − 1

x4 − 1

= (x4N−4d+1 + 1)(x2N + 1)s(x2)

+x2(x4N−4d−1 + 1)
x4N − 1

x4 − 1
.

Next, we consider gcd(x4N − 1, sa(x)). By Lemma 4, we
have

x4N − 1 = (x− 1)4q4(x)n4(x)

= (x− 1)4
∏
q∈Q

(x− βq)4
∏

n∈NQ

(x− βn)4.

So we only need to consider whether x − βj , j ∈ ZN ,
is a divisor of sa(x). Since the base sequence s is the
Legendre sequence of period N ≡ 3 mod 8, by 2), 3) and
4) in Lemma 4, we have s(βj) 6= 0 for any 1 ≤ j < N .
Then by 1) in Lemma 4, we have

s(1) ≡ N − 1

2
mod 2 = 1 6= 0.

So we can obtain s(βj) 6= 0 for any j ∈ ZN . Additionally,

since d 6= N ± 1

4
, we have 4N − 4d + 1 6≡ 0 mod N and

4N − 4d− 1 6≡ 0 mod N . Thus

1 + (βj)4N±4d+1 6= 0, 1 ≤ j < N.

Then x− βj , 1 ≤ j < N , is not a divisor of 1 + x4N−4d+1

and 1 + x4N−4d−1. Moreover, since both 4N − 4d + 1
and 4N − 4d − 1 are odd, x − 1 is the only nontrivial
common divisor of 1+x4N−4d+1, 1+x4N−4d−1 and x4N−1.
Combining the above analysis, we have

gcd(x4N − 1, sa(x))

= (x− 1)gcd

(
x4N − 1

x4 − 1
, (1 + x2N ) +

x4N − 1

x4 − 1

)
= (x− 1)

x2N − 1

x2 − 1

=
x2N − 1

x− 1
.

Then by Lemma 1, the minimal polynomial of the se-
quence a is

ma(x) = (x− 1)(x2N − 1),

and the linear complexity is LC(a) = 2N + 1.
Hence, the proof of Theorem 2 is completed.

Example 1. Let s = (0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0) be a Leg-
endre sequence of period N = 11, d = 1. Then the new
binary interleaved sequence a = I(s1, Ld(s1), s2, Ld(s2))
of period 4N = 44 defined in Theorem 1 is

a = (0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0,

0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0).

By Magma program, the minimal polynomial of a is
ma(x) = x22−1 and the linear complexity of a is LC(a) =
22, which are compatible with the results given by Theo-
rem 1.

Example 2. Let s = (0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0) be a Leg-
endre sequence of period N = 11, d = 2. Then the new
binary interleaved sequence a = I(s1, Ld(s1), s2, Ld(s2))
of period 4N = 44 defined in Theorem 2 is

a = (0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,

1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1).

By Magma program, the minimal polynomial of a is
ma(x) = (x − 1)(x22 − 1) and the linear complexity of
a is LC(a) = 23, which are compatible with the results
given by Theorem 2.

4 Conclusion

In this paper, based on the discussion of roots of the se-
quence polynomials in the splitting field of xN − 1, we
determine both minimal polynomials and linear complex-
ity of two classes of binary interleaved sequences of pe-
riod 4N with low autocorrelation value/magnitude con-
structed in [9]. Results show that when the base sequence
s is a Legendre sequence of period N ≡ 3 mod 8, and

d 6= N ± 1

4
, the linear complexity of these two classes of

sequences is enough to resist the Berlekamp-Massey algo-
rithm. Especially, the linear complexity of the first class
sequence a is just right one half of its period, which can
be applied in the construction of cyclic codes with proper
dimension.

Furthermore, apart from autocorrelation property and
linear complexity, the 2-adic complexity of these two
classes of sequences remains to be solved.
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