
International Journal of Network Security, First Online, Sept. 21, 2019 (VDOI: 1816-3548-2019-00019) 1

Security Access Solution of Cloud Services for
Trusted Mobile Terminals Based on TrustZone

Hui Xia1 and Weiji Yang2

(Corresponding author: Weiji Yang)

Shenyang Normal University, Shenyang 110034, China1

Zhejiang Chinese Medical University, HangZhou 310000 , China2

(Email: yangweiji@163.com)

(Received Oct. 15, 2018; Revised and Accepted May 17, 2019; First Online Sept. 21, 2019)

Abstract

Trusted cloud architecture provides secure and trustwor-
thy execution environment for cloud computing users,
which protects the private data’s computing and stor-
age security. However, with the rapid development of
mobile cloud computing, there is currently still no se-
cure solution for mobile terminals accessing trusted cloud
architecture. Aiming at the above issues, a secure ac-
cess scheme of cloud services for trusted mobile ter-
minals is proposed. The program fully considers the
background of mobile cloud computing applications, uses
ARM TrustZone hardware-based isolation technology to
build a trusted mobile terminal that could protect cloud
service customers and security-sensitive operations on
the terminal from malicious attacks. Physical unclon-
able function (PUF), the key and sensitive data man-
agement mechanism is put forward. The secure access
protocol is designed based on the trusted mobile termi-
nal and by employing trusted computing technology. The
protocol is compatible with trusted cloud architecture
and establishes end-to-end authenticated channel between
cloud server and the mobile client. Six security prop-
erties of the scheme are analyzed and a scenario-based
mobile cloud storage example is presented. Finally a pro-
totype system is implement. Experimental results show
that the proposed scheme has good expandability and se-
cure controllability. Moreover, the scheme achieves small
TCB((trusted computing base) for mobile terminal and
high operating efficiency for cloud users.

Keywords: Mobile Cloud Computing; PUF; Secure Ac-
cess;Trusted Computing; TrustZone

1 Introduction

With the rapid development of cloud computing tech-
nology, mobile terminal equipment, international mobile
communication technology and mobile internet applica-
tions, the concept of mobile cloud computing (MCC) are
gradually affecting people’s daily life. International Mo-

bile Cloud Computing Forum [4] and Intel Aepona [3]
give the relevant definition, mobile cloud computing is a
comprehensive technology for mobile terminal devices to
outsource data processing and data storage to resource-
rich computing platforms through mobile cloud applica-
tions. Mobile cloud computing can be effective reduce
the cost of computing resources, storage resources and
electricity and can enhance the usability of complex ap-
plications in mobile terminals [2]. Mobile cloud comput-
ing presents software as a service’s (referred to as SaaS)
level [10] to the users, users use mobile devices to thin
client software or web browser through a wireless net-
work to access remote cloud services. In recent years,
mobile cloud computing promotion areas include cloud
office, cloud mail, cloud storage, cloud payment, cloud
games and cloud video. Companies have also launched
corresponding support technologies and products for mo-
bile cloud computing, including Apple’s iCloud, Google’s
Cloud Console, Microsoft’s OneDrive and Amazon’s App-
Strea,which have greatly improved the convenience of mo-
bile users to experience cloud services. The main contri-
butions of this paper are as follows:

• For the mobile cloud computing scenario, a method
based on TrustZone technology to build a trusted
mobile terminal is proposed to ensure the security
and reliability of the cloud service client program and
related sensitive operations in the mobile terminal.

• A key and sensitive data management mechanism
based on PUF technology is proposed. This mech-
anism cooperates with TrustZone technology to pro-
vide a trusted root function for trusted mobile ter-
minals and cloud service security access.

• A trusted mobile terminal cloud service security ac-
cess protocol is proposed, which uses trusted comput-
ing technology to establish end-to-end bi-directional
authentication channel between the cloud server and
the mobile client to protect user data and cloud ser-
vice access requests’s authentication, confidentiality

International Journal of Network Security, First Online, Sept. 21, 2019 (VDOI: 1816-3548-2019-00019) 2

and integrity in the access’ process. The protocol is
compatible with the trusted cloud architecture.

Section 1 of this paper discusses the work in this area.
Related work and some research achievement about the
topic is discussed in Section 2. Section 3 presents pre-
liminary knowledge about key and sensitive data man-
agement for trusted mobile terminal cloud.Section 4 ex-
patiates on the design of secure access scheme for trusted
mobile terminal cloud: trusted mobile terminal architec-
ture, and cloud service security.Example and Scheme eval-
uation based on the system is given in Sections 5 & 6.
Section 7 summarizes the full text and looks forward to
future research.

2 Related Work

In order to solve the pro blem of information security from
the underlying computer hardware, the concept of trusted
computing has been proposed and popularized in scien-
tific research and industry. Trusted Computing Group
(TCG) has launched a TPM (Trusted Platform Mod-
ule) security solution for x86 hardware platform. Trusted
platform module(referred to as TPM), the TCM’s main
TPM1.2 specification [16], was revised several times in
2009 to receive the ISO in 2009. In 2013, TCG officially
released a new security solution TPM2.0 standard [17]. In
China, the National Cryptology Authority in 2007 pro-
posed a trusted cryptography module (TCM) [19] with
independent intellectual property rights and related in-
terface specifications. As a basic security technology, an
important application scenario of trusted computing is
to construct a trusted virtualization platform. The vir-
tual trusted platform module(vTPM [6]) can be used to
protect the security of virtual machine monitor. TrustVi-
sor [14] provides trusted services for isolated code by cre-
ating a virtual TPM instance . Because of the advantages
of security isolation, security intervention and data pro-
tection, infrastructure virtualization technology is widely
used in cloud computing architecture, and it is a hot re-
search area in recent years to build trusted cloud comput-
ing environment by trusted virtualization technology. Lit-
erature [15] outlines the concept of trusted cloud comput-
ing platform (TCCP), which provides a closed operating
environment for user virtual machines by extending the
functionality of the trusted platform to the cloud infras-
tructure, thus user data confidentiality and integrity can
be effectively protected.Wuhan University Professor Zhao
Bo et al. [23] summarizes the trusted cloud computing en-
vironment to build the technical methods and challenges.
TrustCloud [1] designed a framework for trust building
and security auditing for cloud computing. Cloud Termi-
nal [9] uses a trusted authentication method to outsource
the data-processing security of user-sensitive applications
to the cloud service provider, where the user’s local host
only displays the interface. CloudProxy [8] uses trusted
computing technology to establish an end-to-end trusted
connection between the cloud host and the user’s host to

protect the security of user data during transmission and
cloud operations. However, the above-mentioned build-
ing methods of trusted cloud computing environment are
designed for x86 hardware platform. How to access the
trusted cloud environment safely and effectively by mobile
terminal equipment is still a problem to be solved.

In the rapid development of mobile cloud comput-
ing today, mobile cloud computing security has attracted
more and more people’s attention. Related research [7,13]
pointed out that: the mobile user’s private data in the
mobile terminal, cloud host and communication channel
on the confidentiality and integrity, are the key to mobile
cloud computing security. Trusted virtualization technol-
ogy and cloud architecture can protect user’s data in the
cloud host, but lack of suppling and supporting the mo-
bile terminal and mobile network communications in the
protection of user data and aim at cloud environment for
the design of trusted solutions. Literature [20] gives a
trusted security isolation method based on mobile oper-
ating system access control strategy, which is based on
the premise of mobile operating system security. However,
the successful use of Android system vulnerabilities in the
implementation of the attack is endless, the operating sys-
tem itself does not provide high-intensity security. For the
research of trusted mobile terminals, the Mobile Trusted
Module (MTM) specification [18] has been released for
mobile terminals, but it is not promoted in the mobile
industry due to the need to rely on additional hardware
modules, and the specification has not been promoted in
the mobile industry.

3 Problem Statement and Prelim-
inaries

3.1 Root Key Seed Extraction

In this paper, the literature [24] proposed SRAM (Static
Random Access Memory) PUF technique to extract the
root key seed S, S is a piece of unique bit string ran-
domly selected by the mobile terminal manufacturer M
in the production process of the device, M uses the physi-
cal characteristics of the SRAM-specific area in the mobile
terminal T to store S, therein. S is only reproduce from
the SRAM PUF component every time T is normally pow-
ered up and is safely cached by the key manager in the SW
(Secure World)). S confidentiality is strictly protected by
TrustZone.

3.2 Key Derivation

In the mobile terminal SW, KDF (key derivation func-
tion) is the key manager of the trusted service and has
a key generation function, which is a deterministic map-
ping: S̃ × P̃ −→ K̃, where S̃ is the key seed space, P̃
is a set of string parameters for declaring the usage of
the key, and K̃ is the space for generating the keys, us-
ing the KDF and the root key seed S, a public private

International Journal of Network Security, First Online, Sept. 21, 2019 (VDOI: 1816-3548-2019-00019) 3

key pairs (dpkT , dskT) that uniquely identify the identity
of the mobile terminal can be generated, the generation
method is:

(dpkT , dskT)←− KDFs(”identity”).

Similarly, srk (Storage Root Key) can be generated in the
form srk ← KDFs(”storage root”). srk is used to fur-
ther generate a storage key to store and protect the actual
sensitive data, and this set of storage key can enhance the
isolation and security. It is worth emphasizing that the
private keys of all storage keys and device keys generated
here never leave the SW and are not stored on the non-
volatile memory of the mobile device. If needed, they will
be used in the same way as the KDF way refactoring,
which can reduce the risk of key loss.

3.3 Sensitive Data Management

A variety of storage keys derived from srk encapsulate
and store the public key apk of the application service
provider A and the key package (ID, kEnc, kMAC , ni) is
required for the cloud service session. The key data’s
specific meaning and usages will be described in detail
in Section 4.1. The encapsulation operation is performed
in the data processor of the SW trusted service. The
data processor implements the data encapsulation func-
tion Data Seal(). The encapsulated data block can be
stored in the public nonvolatile memory of the device.
In this paper, MACk(m) represent the calculation of the
message authentication code for the data m by using the
key k; Enck(m) means that the data m is encrypted with
the key k, and the symmetric and asymmetric encryption
can be expressed according to the type of k; Signk(m)
represents the signature operation; ‖ indicates the con-
nection of the data. The following are the specific encap-
sulation methods:

• For the public key apk, the encapsulation only needs
to protect the integrity of the public key to prevent
mobile applications are malicious tampering caused
public key damage, the steps are as follows:

mkapk ←− KDFsrk(”storage key”, ”MAC”, apk),

blobapk ←− Data Seal(”MAC”,mkapk, apk);

where KDFsrk means storage root from key deriva-
tion function, among them,

blobapk = apk‖MACmkapk
(apk).

• For the key package (ID, kEnc, kMAC , ni), when
packing,we need to protect their confidentiality and
integrity to prevent the rival’s theft or tampering, the
steps are as follows:

(skID,mkID) ←− KDFsrk(”storage key”,

”Enc+MAC”, ID),

blobID ←− Data Seal(”Enc+MAC”, skID,

mkID, (ID, k
enc, kMAC , ni));

blobID = EncskID
(ID, kEnc, kMAC , ni)‖

MACmkID
(EncskID

(ID, kEnc,

kMAC , ni)).

With the storage key refactored in the key manager,
the data processor can call the Data Unseal() func-
tion to recover and validate the sensitive data from
the corresponding data block.

4 Design of Secure Access Scheme
for Trusted Mobile Terminal
Cloud Service

4.1 Trusted Mobile Terminal Architec-
ture

With TrustZone and PUF technology, we designed a
trusted mobile terminal architecture for cloud computing
scenarios. On the basis of the existing mobile terminal
hardware architecture, our trusted terminal program is
based on software design and implementation as a focus,
targeting low cost, flexibility and scalability. Figure 1
shows the proposed trusted mobile terminal architecture
and the interaction between the various components of
the details in this paper.

Using the method given in literature [21], it is possi-
ble to construct TEE (Trusted Execution Environment)
safely and efficiently in the TrustZone SW, The TEE
implemented in the SW is physically isolated from the
universal mobile system environment implemented in the
NW (Normal World), running a custom TEE OS in OS
to executing security-sensitive program code. There is a
Universal Mobile OS running on the NW, which can be
an Android or iOS system capable of performing regular
mobile applications, and the functions of each component
described in details below.

1) Trusted agent: The trusted agent interacts directly
with the mobile application in the NW. The com-
ponent receives a trusted service request from the
mobile application, assembles the command for call-
ing the trusted service component in the SW (Se-
cure World) according to the request type, and pre-
pares for the substantial security operation in the
SW. The component contains the following two sub-
components:

• Software stack: Mobile applications to provide
high-level trusted service interface, responsible
for resolving the application request data, and
return the results of service response;

• Command caller: Assembling the trusted ser-
vice invocation command, interacting with the
trusted service component in the SW, and trans-
mitting the command through the canonical
Global Platform TEE client API [5], request-
ing the NW to switch to the SW by means of

International Journal of Network Security, First Online, Sept. 21, 2019 (VDOI: 1816-3548-2019-00019) 4

the NW underlying driver and wait for the data
to return.

2) Trusted service: Trusted service component is a core
component of Trusted Mobile Terminal, which not
only realizes Trusted Computing related functions,
such as Trust Root Rendering, Key and Sensitive
Data Management and Trusted Environment Au-
thentication, but also implements the security credit-
ing protocol execution in mobile terminal Logic. The
code execution of this component is protected by the
TrustZone quarantine mechanism and consists of the
following five subcomponents:

• API functions: Receive trusted service requests
from trusted agents in the NW, parse command
data, pass operational instructions to the logic
engine, and wait for the results to return to the
trusted agent;

• Key manager: Use the root key seed extracted
from the SRAM PUF to produce a variety of
cryptographic keys and provide the key to the
data processor for user;

• Data handlers: In order to prevent adversaries
from forging security parameters (usually user
names and passwords), the data processor re-
ceives only the parameter input from the mobile
application trusted cell in the SW and passes the
parameters to the logic engine. In addition, the
subcomponent is also responsible for the encap-
sulation and de-encapsulation of sensitive data,
encapsulated data can be stored in the general
non-volatile memory of the mobile device;

• Crypto library: It provides cryptographic algo-
rithm support for key manager, data processor
and logic engine, which implements symmetric
and asymmetric encryption,decryption and sig-
nature verification algorithms and a variety of
message digest algorithms.

• Logic engine: Obtains the necessary parameter
input from other sub-components. According
to the designed security access protocol logic,
it performs the security-sensitive trusted ser-
vice operation of the mobile terminal and out-
puts the execution result. In addition, the sub-
component implements the load measurement
and start-up control of the application process
in SW.

3) Mobile application (App) and App trustlet: When
the mobile user wants to access the cloud services at
C, whether it is browser or client mode, you need to
start the appropriate mobile applications. The mo-
bile application provided by the application service
provider A comprises two parts: a mobile applica-
tion running in the NW and a mobile application
trustlet running in the SW. App only provides the
user with a graphical user interface (GUI) and basic

non-security-sensitive functions, App trustlet is re-
sponsible for collecting and pre-processing sensitive
data information needed to access the cloud service
and presenting it to the trusted service for operation
of the secure access protocol. When the App needs
to access the cloud service through the implementa-
tion of secure access protocol, it calls trusted agent
software stack to make trusted service requests. Af-
ter TrustZone uses the system interrupt to complete
the NW to SW switchover, the Trusted Service will
load the startup App trustlet whose code integrity
is measured by the logical engine of the trusted ser-
vice. Based on our previous study work [22], once the
App trustlet is found to have been tampered with by
an adversary using the whitelist mechanism in the
SW, it can be disabled. When the App trustlet is
properly started, the user can send cloud service user
name and password and other sensitive data infor-
mation into App trustlet in the security mode, and
then hand over to the trusted service for process-
ing. The App implements the communication with
the App trustlet through the inter-domain communi-
cation mechanism [12] provided by TrustZone, where
the mobile application design conforms to the current
TrustZone’s normal application mode.

4) Components in the kernel: In SW’s TEE operating
system kernel, there is a drive component SW-Driver;
in the NW mobile operating system kernel, there is a
drive component NW-Driver. The above two driver
components are used to handle the request and re-
sponse commands of the two world switching in the
TrustZone, which contains the communication data
of the two. As an implementation of the security
monitor defined by TrustZone, the monitor is located
in the system kernel of the SW, which controls the
underlying hardware to perform the specific actions
of the TrustZone world switch. In addition to these
special components, the OS kernel implementation in
the NW has a variety of generic hardware’s driver, in-
cluding network communication drivers, which is re-
lied by the data communication between the trusted
mobile terminal and the cloud service.

5) Components in the hardware: Trusted mobile ter-
minal hardware support ARM TrustZone extension
technology, by the protection of the technology, the
SRAM PUF physical components located in the
hardware can only be accessed by the SW, and the
software algorithm of the PUF is implemented by the
key manager of the trusted service.

4.2 Cloud Service Security Access Proto-
col

The interactive participant entities of the cloud security
access protocol are T, A, and C, and an overview of the
protocol implementation is shown in Figure 2 under nor-
mal circumstances. In a certain period of time, when T

International Journal of Network Security, First Online, Sept. 21, 2019 (VDOI: 1816-3548-2019-00019) 5

Figure 1: Architecture of trusted mobile terminal for cloud computing

first accesses a cloud service located at C, it first sends an
authorization request for access service to A; after charg-
ing and legitimacy authentication, A generates a session
key package and issues it to T; at the same time, A will be
certified to the user data sent to C through the security
channel, here, we do not distinguish the user management
host in C and service operations host; after obtaining
the authorized session key package, T sends the service
access request to C by using the relevant key and the
authentication information; after C verified the request,
the verification results will return to T; then complete
access authentication, T and C start a normal cloud ser-
vice interaction. The secure access protocol we provide
can be interfaced with the trusted cloud architecture to
achieve bidirectional authentication between the T and C
secure execution environments. This paper assumes that
C adopts the trusted cloud architecture proposed in lit-
erature [8], when returning the T service access request
verification result, C will attach the integrity metric of
the cloud service program from cloud host.

The secure access protocol with the trusted mobile ter-
minal as the core consists of 4 parts, authorization appli-
cation, access request, authentication response and au-
thorization revocation. Among them, the authorization
application is only executed in three cases: (1) The first
time users use T to request access to cloud services; (2)
The last authorization application has expired; (3) Due
to network error or malicious attack, authorization was
revoked. After successfully executing the authorization
request, the user can use T to request access to the cloud
service several times within a certain period of time. The
access request and authentication response of the protocol
can be executed multiple times.

Figure 2: An overview of secure access protocol under
normal condition

International Journal of Network Security, First Online, Sept. 21, 2019 (VDOI: 1816-3548-2019-00019) 6

4.2.1 Application for Authorization

In this part of the agreement, the user using T sends a
cloud service access authorization request to A, and A
verifies the relevant parameters in the application. After
determining the legality of the T and its users, generate a
secret for the future conversation between T and C. The
key package is sent to both parties, as follows:

1) The user operates the App in NW to request access
to the cloud service, TrustZone switches to SW, and
T calls KDF to generate the message integrity pro-
tection key mkauth, which is used to protect the in-
tegrity of data communication when A sends a ses-
sion key package to T. The key generation method is
as follows:

mkauth ←− KDFs(”session key”, ”MAC”, r),

among them, r is the key generated by the key man-
ager for generating different mkauth.

2) When T loads the launch App trustlet in the SW, it
performs integrity metrics on the loaded code, and
uses the hash function to get the metric µ(app).
Based on our whitelist mechanism [12], we can find
the tampering of the App trustlet, if tampered, the
agreement will terminate execution.

3) The user input user name user and password pswd of
the login cloud service to the SW’s App trustlet, and
the App trustlet calculates the password hash value
H(pswd), and sends it to the data processor of the
trusted service along with the username, and App
trustlet will be shut down by the trusted service.

4) The logic engine of the trusted service in SW calls the
authorization application API: Apply(), generates
the authorization request message m apply: m apply
←− Apply(CertT , dskT , blobapk, mkauth, µ(app),
user, H(pswd)). The API specifically performs the
following operations:

a. Call the key manager to reconstruct the device
key private key dskT ;

b. Call the key manager to reconstruct the apk
storage protection key, call the data processor
to unblock blobapk, then get the correct apk;

c. Call the signature function Generate the signa-
ture:

w := SigndskT
(mkauth, u(app), user,H(pswd));

d. Call the encryption function to generate the end
of the communication message:

m apply :== Encapk(CertT ,mkauth, u(app),

user,H(pswd), w).

Here, apk is derived from A, in fact, A generates
a pair of public-private key pairs (apk, ask) for

each application issued, apk can be extracted
by T for authentication communication with A
when the application is installed; in addition,
apk can uniquely identify an application.

5) T switches from SW to NW, sends m apply to A, A
decrypts the message with its own private key ask,
uses the public key M certificate CertT issued by au-
thority, and obtains the device key public key dpkT
of T , verifying the signature of the relevant data, ex-
tracting valid data tuples of the authorization request
message:

(mkauth, µ(app), user,H(pswd)).

6) A verifies the integrity measure µ(app) of the App
trustlet in T according to their published application
code, and uses the user and H(pswd) verify the legit-
imacy of the user account, you can check the balance
of the account: if the relevant authentication fails,
returns the message and reason why the application
of T failed; if all authentication passes, A generates
a session key packet tuple (ID, kEnc, kMAC , n0) for
T and C, where ID uniquely identifies the key pack-
age; kEnc is used to protect the confidentiality of the
conversation; kMAC is used to protect the integrity
of the session; n0 is a randomly selected nonce value
and to prevent replay attacks. T and C access once
correct service connection, each of the value will plus
1, so the (i+ 1)th connection get ni;

7) A is the authorized session key package for T , and
A will use the dpkT encryption to generate σ after
signing the session cipher package:

σ := EncdpkT
(apk, (ID, kEnc, kMAC , n0),

Signask(ID, kEnc, kMAC , n0)).

Among them, apk is used to identify the application
corresponding to the encrypted data, and A gener-
ates an authorization response message in the fol-
lowing manner:

m reply := σ‖MACmkauth
(σ).

8) A sends m reply to T and sends (ID, kEnc, kMAC ,
n0) along with user and µ(app) to C through the se-
curity channel. If C finds the same user’s previous
session in the database package through user, the old
key package is deleted. The lifetime of the session
key package can be set to a different length depend-
ing on the security sensitivity of the cloud service,
which can be 1 day, 7 days, or 30 days. The validity
period is recorded at C, and if the expiration date is
exceeded, the session key package will automatically
invalidated, and the expired session key package is
periodically cleaned and deleted by C;

9) After T receives m reply, it switches to SW , and
the trusted service parses m reply. After verifying

International Journal of Network Security, First Online, Sept. 21, 2019 (VDOI: 1816-3548-2019-00019) 7

the message integrity and signature correctness, the
extracted session key package (ID, kEnc, kMAC , n0)
is encapsulated as a blobID and stored in a mobile
device.

4.2.2 Access Request

In this part of the protocol, T uses the session key package
to send a cloud service access request to C. The specific
steps are as follows:

1) T reloads start App trustlet, and measures the loaded
the integrity of the code once again, the use of hash
function to obtain the metric µ′(app), you can use
the white list mechanism to check again whether the
App trustlet is tampered;

2) The logical engine of the trusted service in SW calls
the cloud service access request API: Request() gen-
erates m request:

m request⇐= Request(blobID, µ
′(app)).

The API specifically performs the following operations:

1) Call the key manager to reconstruct the storage pro-
tection key of the session key package, and call the
data processor to unlock the blobID to get the correct
session key packet tuple (ID, kEnc, kMAC , ni);

2) Generate cloud service access request communication
message m request:

m request := ID‖EnckEnc(”request”, ni, µ
′(app))‖

MACkMAC (ID,EnckEnc(”request”,

ni, µ
′(app))).

Among them, ID is used to tell C which session key
packet to use to decrypt and verify the message; the
request is a command parameter that identifies the
execution of the cloud service at the request C. Here,
the command to apply for access to the cloud service
is indicated.

3) T switches to NW and sends m request to C.

4.2.3 Verify the Response

In this part of the protocol, C uses the session key pack-
age to parse the access request from T , and returns the
verification result and the integrity measure of the cloud
service executive to T , and the concrete steps are as fol-
lows:

1) After receiving the m request, C finds the corre-
sponding session key package in the database accord-
ing to ID, to check whether the session key package
is still valid, expires or revokes, or fails to find the
key package. In case, C sends a response marked as
verification failure to T , and T will re-execute the
authorization application agreement.

2) C uses the legitimate key package parsing m request,
and matches the value of ni to the current nonce
value of the session key package record in the
database, if they are not the same, then return the
validation failure response to T , T will re-execute the
authorization request protocol.

3) C matches the µ′(app) in m request with the origi-
nal µ(app) of the corresponding session key package
in the database, if not the same, that App Trustlet
in T is likely to have been tampered, C will reject
the access request of T , and the response to the au-
thentication failure is returned.

4) After the above 3-step verification, C uses the se-
curity method in the trusted cloud architecture to
generate an integrity metric µ(csp) of the program
running the T-requested cloud service in the virtual
machine. In some specific application scenarios , the
metric may be derived from a hash metric for the
entire virtual machine image, for µ(csp) certification
methods can refer to the specific agreement of the
cloud architecture.

5) C generates a communication message m response
for the verification response:

m response

:= ID‖EnckEnc(”response”, passed”, ni, apk,

µ(csp))‖MACkMAC (ID,EnckEnc(”response”,

”passed”, ni, apk, µ(csp))).

6) After C sends m response to T , it updates the nonce
value: ni+1 = ni+1, and sets the nonce limit value of
the access service to be limit n = ni +j, j represents
the T access to the cloud service after the verification.
If ni+x > limit n of C at the xth access, T needs to
re-execute the access request protocol to let C update
and set limit n;

7) After receiving m response, T switches to SW to
parse and verify it. Meanwhile, it updates the nonce
value of the itselves’ session key package: ni+1 =
ni + 1. The security method with trusted cloud ar-
chitecture can verify the integrity of the cloud ser-
vice program through µ(csp). After the verification
is passed, the App trustlet transmits command pa-
rameters to the trusted service according to the spe-
cific function of the user requesting the cloud service.
The trusted service uses the session key package to
assemble the cloud service operation command, and
communicates with C to complete the specific Cloud
service features.

5 Mobile Cloud Storage Applica-
tion Examples

Based on the proposed secure access solution for mobile
terminal cloud services, we designed a mobile cloud stor-

International Journal of Network Security, First Online, Sept. 21, 2019 (VDOI: 1816-3548-2019-00019) 8

age application instance MCFile. MCFile security ob-
jectives including: (1) protecting the confidentiality and
integrity of mobile terminal users sending and receiving
files to the cloud server; (2)The cloud server can en-
force mandatory security authentication and access con-
trol policies for mobile terminal users’ access requests
and file access. The cloud storage service operation com-
mands implemented by MCFile can be: create files (cre-
ate). Delete files, write files, read files, addrights, and re-
moverights. Assuming that there are two users whose user
names are user1 and user2, user1 stores the file named
Fuser1 in the cloud. Then, after the user1 successfully
performs the authentication response of the cloud service
security access protocol using the mobile terminal T, he
can generate the following cloud service request command
in the SW to read the cloud file Fuser1 :

ID‖EnckEnc(”read”, Fuser 1, ni+1)‖MACkMAC (ID,

EnckEnc(”read”, Fuser 1, ni+1)).

After C received the command, find the associated ses-
sion key package and user name of user1 according to the
ID. After parsing the request command and verifying the
legitimacy of the command, C checks the user1’s permis-
sion for the file Fuser1. If it is judged as readable, the
following service response will be returned: where File
(Fuser1) represents the file entity specified by Fuser1, the
use of data block technology can achieve large volume of
the file network encryption transmission. If user1 wants
to share the file Fuser1 with user2, it can add the read
permission of Fuser1 to user2. The corresponding cloud
service request command is as follows:

ID‖EnckEnc(”addright”, user2, ”read”, Fuser1, ni+1)

‖MACkMAC (ID,EnckEnc(”addright”, user2,

”read”, Fuser1, ni+1)).

After receiving the column verification, C adds a user2
readable entry in the permission list of file Fuser1 , but at
this time the owner of Fuser1 is still user1, and user1 can
send a command to cancel the read permission of user2
to Fuser1 . In addition, when the symbol * is used in the
above request command instead of user2, user1 assigns
the readable authority of Fuser1 to all legitimate users,
that is, the public sharing of files is realized. The other
functions of MCFile other cloud storage service functions
can be implemented by this method. Analogy, no more
description here.

6 Assessment

We simulated and realized the mobile terminal T , the ap-
plication service provider A and the cloud service provider
C respectively. For the simulation and realization of mo-
bile terminal equipment, we used the embedded devel-
opment board Zynq-7000 AP Soc Evaluation Kit. The
board supports the TrustZone security extension with an

ARM Cortex-A9 MPCore processor, 1GB of DDR3 mem-
ory, and OCM (on-chip memory) module with 256KB
SRAM.

For the application service provider’s simulation im-
plementation, we used a Dell OptiPlex 990 desktop com-
puter with a 3.3GHz Intel i3-2120 dual-core processor and
4GB of memory, running the Ubuntu10.04 operating sys-
tem with kernel version Linux 2.6.32. For cloud service
provider simulation implementation, we used a Lenovo
ThinkCentre M8500t desktop computer, equipped with
3.4GHz Intel i7-4770 quad-core processor and 8GB of
memory, the operating system is the same as the former.

6.1 Code Amount and Trusted Comput-
ing Based

In the program prototype system, the realization of the
components of the C code’s approximate lines number
(lines of code, referred to as LoC) in Table 1. The trusted
computing base (TCB) of a device is a collection of soft-
ware, hardware, and firmware required to achieve device
security. The smaller the scale is, the more difficult to be
attacked by rivals, and the security is relatively easy to
be guaranteed. In this scheme, the TCB of the trusted
mobile terminal contains only the mobile device hardware
and the software running in the SW. According to the lit-
erature [11], a certain type of SW security OS currently in
the mobile commercial market has 6000 LoC. If this type
of OS is used, plus the trusted service and App trustlet
that we implement, the TCB software part of the scheme
is only 9100 LoC. This scale is relatively small, and the
controllability of system security is relatively high.

6.2 Performance Evaluation

Using the prototype system, we experimented the related
operations required by the mobile terminal T to perform
the solution in this paper. The program include encap-
sulation and unblocking sensitive data and communica-
tion interactions in the process of generating and resolv-
ing authorization requests, access requests, and requests
for cloud services, among them, cloud service request and
response messages do not consider specific cloud service
commands. The operating time cost statistics take the av-
erage of 100 runs, and the experimental results are shown
in Table 2.

6.3 Performance Evaluation of Server-
side Program

Using the prototype system, we experimented with the
related operations required by the application service
provider A and the cloud service provider C in the imple-
mentation of this program. In the scheme, A is responsi-
ble for receiving and resolving the authorization applica-
tion messages sent by the mobile terminal and verifying
it to generate an authorization response message. In this
experiment, we take this process as a response. First,

International Journal of Network Security, First Online, Sept. 21, 2019 (VDOI: 1816-3548-2019-00019) 9

Table 1: Code size and TCB implemented components

Entity Components Loc TCB
Trusted service 2300 V

Mobile Terminal T Trusted proxy 1500 X
App trustlet 800 V

App 500 -
Application Service Provider A Authorization procedure 5600 -

Cloud Service Provider C Access authentication procedure 6300 -

Table 2: Time overheads of the operations on mobile terminal

Operatations Time Consumption (ms)

Encapsulation apk 0.030
Unblock apk 0.020

Encapsulation session key package 0.081
Unblock session key package 0.093

Generate m apply 129.906
Resolve m reply 128.738

Generate m request 0.117
Resolve m response 0.110

Generate cloud service access request 0.152
Resolve Cloud Service Authentication Response 0.150

we experimented with the time cost of A single thread to
complete a response, taking the average of 100 runs inde-
pendently. The experimental results are single-threaded
single time-consuming 13.225ms. Then, we experimented
with the time required to complete a single response when
using A thread pool concurrent execution with a large
number of authorization requests. The experimental re-
sults are shown in Figure 3 . It can be seen from the graph
that as the number of concurrent requests increases from
100 to 500 on the abscissa, the response time of a single
request increases from about 400 ms to about 2300 ms on
the ordinate. This substantial increase is due to the fact
that A needs to be in a single response execute asymmet-
ric encryption,decryption,signature and verify every time,
these operations consume more system resources. Our ex-
periments are based on a generic desktop computer, tak-
ing into account that A is usually implemented by sev-
eral professional server clusters in practical application,
and the optimized concurrency response will have a lot of
room for improvement. In addition, the frequency of mo-
bile users to implement authorization applications is not
high compared to the mobile network delay. Moreover,
server response delay about 2 000ms can not be accepted.

C is responsible for receiving and resolving the access
request message sent by the mobile terminal in the scheme
and validating it to generate a verification response mes-
sage. In the experiment, we take this process as a re-
sponse. Similarly,we first experimented with the execu-
tion of a single response of C single thread, and the ex-

Figure 3: Authorization response latency in A

International Journal of Network Security, First Online, Sept. 21, 2019 (VDOI: 1816-3548-2019-00019) 10

Figure 4: Authentication response latency in C

perimental results were 0.016 ms for single-thread single
response. Then, we experimented with C in the case of
concurrent execution to complete a single response time,
the experimental results can be shown in Figure 4. It can
be seen from the figure that as the number of concurrent
requests increases, the response time of a single request
increases from about 0.030ms to about 0.100ms, and the
absolute value and the growth rate are not large, which
is due to the operations that the C in the process of one
response does not consume a lot of system resources. In
addition to sending a verification response message to the
mobile terminal, C will also interact with the mobile ter-
minal in large numbers to complete the specific cloud ser-
vice function response, which is basically consistent with
the authentication response. Regardless of the specific
cloud service operation, the response time overhead will
be at the same level as the experimental results in Figure
4. The request response handled by C will be executed
frequently in this scenario, which occupies a large pro-
portion of the actual running interaction of the scheme.
The low response delay reflected in the experiment indi-
cates that the solution has good performance at the cloud
service provider.

7 Discussion and Conclusions

7.1 Discussion

In many anonymous authentication systems, the direct
anonymous attestation (DAA) protocol was officially re-
leased by TCG for anonymous proof based on TPM and
has now been accepted as an ISO standard. The proto-
col can be modified to apply to the program in order to
achieve anonymous authentication of the service provider
to the user. In the previous work, we designed the DAA-
TZ scheme for mobile terminals based on the DAA proto-
col. The scheme used TrustZone’s good features to pro-
vide secure and efficient anonymous authentication ser-
vices. The program system has been fully implemented
and tested. Therefore, combining with DAA-TZ, it is pos-

sible to design and implement a trusted terminal cloud
service secure access scheme with anonymous attributes.

7.2 Conclusion and Future Studies

This paper analyzes the related security issues of mobile
terminal access cloud service for mobile cloud comput-
ing scene, and proposes a trusted mobile terminal cloud
service security access scheme. The scheme uses Trust-
Zone security extension technology to construct trusted
mobile terminal architecture. Trusted mobile terminal
uses SRAM PUF to obtain root key seed, and realized
the security management mechanism of key and sensitive
data.Secondly, based on the idea of trusted computing
technology, the cloud service security access protocol is
designed on the basis of trusted mobile terminal, and the
protocol is compatible with trusted cloud computing ar-
chitecture. The analysis and experimental results show
that the security access scheme proposed in this paper
can effectively realize the security authentication of the
mobile terminal in the process of accessing the cloud ser-
vice and protect the private data security of the mobile
user in the cloud service. The program has better scala-
bility and smaller mobile terminal TCB, its overall oper-
ation efficiency is higher, mobile users wait for the delay
within the acceptable range. In the future work,we will
do a formal analysis for the security access protocol which
presented in the program , and give a more detailed proof
of security.

Acknowledgments

This work is supported by Scientific Study Project for In-
stitutes of Higher Learning, Ministry of Education, Liaon-
ing Province (LQN201720), and Natural Science Founda-
tion of LaioNing Province, China (20170540819). The
authors gratefully acknowledge the anonymous reviewers
for their valuable comments.

References

[1] A. Alaqra, S. Fischer-Hübner, T. Groß, et al., “Sig-
natures for privacy, trust and accountability in the
cloud: Applications and requirements,” Privacy and
Identity Management. Time for a Revolution?, vol.
476, pp. 79-96, 2016.

[2] S. Al-Janabi, I. Al-Shourbaji, M. Shojafar, et al.,
“Mobile cloud computing: Challenges and future re-
search directions,” in International Conference on
Developments in Esystems Engineering, 2017. DOI:
10.1109/DeSE.2017.21.

[3] A. Alzahrani, N. Alalwan, M. Sarrab, “Mobile cloud
computing: Advantage, disadvantage and open chal-
lenge,” in Proceedings of the 7th Euro American
Conference on Telematics and Information Systems,
2014. DOI:10.1145/2590651.2590670.

International Journal of Network Security, First Online, Sept. 21, 2019 (VDOI: 1816-3548-2019-00019) 11

[4] H. T. Dinh, C. Lee, D. Niyato, P. Wang, “A survey of
mobile cloud computing: Architecture, applications,
and approaches,” Wireless Communications & Mo-
bile Computing, vol. 13, no. 18, pp. 1587–1611, 2013.

[5] GlobalPlatform device technology, TEE Client
API Specification Version 1.0, 2010. (http://
globalplatform.org)

[6] S. Hosseinzadeh, S. Laurén, V. Leppänen, “Se-
curity in container-based virtualization through
vTPM,” in IEEE/ACM International Conference
on Utility & Cloud Computing, 2017. DOI:
10.1145/2996890.3009903.

[7] Q. Jiang, J. Ma, F. Wei, “On the security of a
privacy-aware authentication scheme for distributed
mobile cloud computing services,” IEEE Systems
Journal, vol. 12, no. 2, pp. 1-4, 2016.

[8] M. John, R. Tom, S. Fred, The Cloud-
Proxy Tao for Trusted Vomputing, Techni-
cal Report, No.UCB/EECS-2013-135, 2013.
(http://www.eecs.berkeley.edu/Pubs/
TechRpts/2013/EECS-2013-135.html)

[9] C. Lee, Security Control Apparatus and Method
for Cloud-based Virtual Desktop, 2017. (https://
patents.google.com/patent/US9674143B2/en)

[10] Y. Li, Z. Han, Z. Huang, et al., “A remotely keyed file
encryption scheme under mobile cloud computing,”
Journal of Network & Computer Applications, vol.
106, pp. 90-99, 2018.

[11] W. H. Li, H. B. Li, H. B. Chen, Y. B. Xia, “AdAt-
tester: Secure online mobile advertisement attesta-
tion using TrustZone,” in Proceedings of the 13th
Annual International Conference on Mobile Systems,
Applications, and Services, pp. 75–88, 2015.

[12] J. Lind, I. Eyal, F. Kelbert, et al., “Teechain:
Scalable blockchain payments using trusted ex-
ecution environments,” ArXiv, 2017. (https://
www.researchgate.net/publication/318528079_

Teechain_Scalable_Blockchain_Payments_

using_Trusted_Execution_Environments)
[13] M. B. Mollah, M. A. K. Azad, A. Vasilakos, “Secu-

rity and privacy challenges in mobile cloud comput-
ing: Survey and way ahead,” Journal of Network and
Computer Applications, vol. 84, pp. 34-54, 2017.

[14] W. Pan, Y. Zhang, M. Yu, et al., “Improving virtu-
alization security by splitting hypervisor into smaller
components,” in Data and Applications Security and
Privacy XXVI, pp. 298-313, 2012.

[15] N. Santos, K. P. Gummadi, R. Rodrigues, “To-
wards trusted cloud computing,” Proceedings of the
Conference on Hot Topics in Cloud Computing,
2009. (https://www.usenix.org/legacy/event/
hotcloud09/tech/full_papers/santos.pdf)

[16] Trusted computing group, TPM Main Specifica-
tion, Version1.2, Revision 116, 2011. (http://www.
trustedcomputinggroup.org)

[17] Trusted computing group, Trusted Platform Module
Library, Family 2.0, Revision 01.16, 2014. (http:
//www.trustedcomputinggroup.org)

[18] Trusted computing group, TCG Mobile Trusted Mod-
ule Specification, Version1.0, Revision 7.02, 2010.
(http://www.trustedcomputinggroup.org)

[19] Q. X. Wu, X. W. Yang, H. Zou, F. J. Yu, X. K.
Ning, Z. Wang, “Technic specification of cryptog-
raphy supporting platform for trusted computing,”
China State Password Administration Committee,
2007. (http://www.oscca.gov.cn)

[20] C. Wu, Y. J. Zhou, K. Patel, Z. K. Liang, X. X.
Jiang, “AirBag: Boosting smartphone resistance to
malware infection,” in Proceedings of Network and
Distributed System Security Symp (NDSS’14), 2014.
(https://pdfs.semanticscholar.org/4823/
f6af261a88716980485638f2d06f94bbf2d4.pdf)

[21] B. Yang, D. G. Feng, Y. Qin, “A lightweight anony-
mous mobile shopping scheme based on DAA for
trusted mobile platform,” in Proceedings of the IEEE
13th International Conference on Trust, Security and
Privacy in Computing and Communications, pp. 9–
17, 2014.

[22] Y. J. Zhang, D. G. Feng, Y. Qin, B. Yang, “A Trust-
Zone based trusted code execution with strong se-
curity requirements,” Journal of Computer Research
and Development, vol. 52, no. 10, pp. 2224–2238,
2015.

[23] B. Zhao, F. Yan, L. Q. Zhang, J. Wang, “Build
trusted cloud computing environment,” Communica-
tions of China Computer Federation (CCF’12), vol.
8, no. 7, pp. 28–34, 2012.

[24] S. J. Zhao, Q. Y. Zhang, G. Y. Hu, Y. Qin, D. G.
Feng, “Providing root of trust for ARM TrustZone
using on-chip SRAM,” in Proceedings of the 4th In-
ternational Workshop on Trustworthy Embedded De-
vices, pp. 25-36, 2014.

Biography

Hui Xia received his B.S. and M.S. degree from Xidian
University,China, in 2003, 2006,respectively. He is cur-
rently a associate professor with Shenyang Normal Uni-
versity. His research interests include cloud computing,
cryptography and information security.

WeiJi Yang received his B.S. degree from Zhejiang Chi-
nese Medical University , China, in 2005, M.S. degrees
from Beijing University of Posts and Telecommunications,
China, in 2009. He is currently a Research Associate with
ZheJiang Chinese Medical University. His research inter-
ests include Information Security and Traditional Chinese
Medicine Informatics.

