
International Journal of Network Security, First Online Apr. 6, 2020 (VDOI: 1816-3548-2020-00016) 1

Partitioned Group Password-based
Authenticated Key Exchange with Privacy

Protection

Hongfeng Zhu, Yuanle Zhang, Xueying Wang, and Liwei Wang
(Corresponding author: Hongfeng Zhu)

Software College, Shenyang Normal University

No. 253, HuangHe Bei Street, HuangGu District, Shenyang, P. C. 110034 - China

(Email: zhuhongfeng1978@163.com)

(Received June 20, 2019; Revised and Accepted Dec. 6, 2019; First Online Apr. 6, 2020)

Abstract

When a group Password-Based key exchange protocol is
executed, the session key is typically extracted from two
types of secrets: Shared keys (password) for authentica-
tion and freshly generated (nonces or timestamps) values.
However, if one user (even subgroup users) runs the pro-
tocol with a non-matching password, all the others abort
and no key is established. In this paper, we explore a
more flexible, yet secure and privacy protection, GPAKE
and put forward the notion of partitioned and privacy
protection GPAKE, called PPP-GPAKE. PPP-GPAKE
tolerates users that run the protocol on different pass-
words. Through a protocol run, any subgroup of users
that indeed share a password, establish a temporary ses-
sion key, and all the communication processes are user
anonymity for outsiders by a temporary database help-
ing. At the same time any two keys, each established by
a different subgroup of users, are pair-wise independent
if the corresponding subgroups hold different passwords.
Compared with the related literatures recently, our pro-
posed scheme can not only own high efficiency (only two
communication rounds) and unique functionality, but is
also robust to various attacks. Finally, we give the secu-
rity proof and the comparison with the related works.

Keywords: Authentication; Group Key Agreement; Pass-
word; Privacy Protection

1 Introduction

With the popularization of network application, how to
establish a secure channel between two nodes is a spe-
cial problem worth considering. There is an increasing
need for group PAKE [2] protocols to protect communica-
tions for a group of users. Although two-party password-
authenticated key exchange (PAKE) protocols have been
carefully studied for the past few years, group PAKE pro-
tocols have received much attention owing to it’s a general

settings. PAKE protocol is favored by cryptographers
because of its short, low-entropy and easy-to-remember
passwords for authentication. Low-entropy and human-
memorable passwords are widely used for user authentica-
tion and secure communications in real applications, e.g.
internet banking and remote user access, due to their
user friendliness and low deployment cost. The problem
of strong authentication and key exchange between two
parties sharing a password, referred to as the two-party
password-authenticated key exchange (2PAKE) problem,
has been well studied and many solutions have been pro-
posed in the literature.

With proliferation of group-oriented applications, e.g.
teleconferencing, collaborative workspaces, there is an in-
creasing need for group PAKE protocols to protect com-
munications for a group of users. However, due to the low
entropy of passwords, PAKE protocol is vulnerable to dic-
tionary attacks. In dictionary attacks, an adversary tries
to break the security of a protocol by exhaustive search.
Dictionary attacks can be classified into three types: On-
line (can be resisted by limiting number of attempts eas-
ily), off-line and undetectable on-line dictionary attacks,
the two latter are not easy to resist. And group PAKE
(GPAKE) is the natural extension to PAKE that empow-
ers groups of more than two users to establish a session
key, given that they share a common password. GPAKE
focuses on a simpler, more realistic scenario where users
only hold passwords, not credentials, and do not revoke
them.

Consider the situation: Before participating in the
GPAKE protocol, users must identify group members who
claim to hold passwords. Then, the GPAKE protocol al-
lows us to prove our understanding of passwords (and
establish session keys). However, if only one user partic-
ipates in the execution of the protocol with a different
password, the user will be regarded as an active oppo-
nent and cause the user to terminate (even if all other
users share the same password). The same principle is

International Journal of Network Security, First Online Apr. 6, 2020 (VDOI: 1816-3548-2020-00016) 2

applied in (non-cryptographic) group key exchange pro-
tocol: Whenever authentication fails, the user usually
terminates the protocol execution and does not establish
a joint key between those who successfully authenticate
each other. In this paper, we design group key exchange
more flexibly. That is, a packet PAKE protocol based
on partition and privacy protection, PPP-GPAKE pro-
tocol. That is to say, if a user runs the protocol with a
mismatched password, other users do not have to wait to
establish the key again.

And in the paper, on the premise of GPAKE, we add
the concepts of partition and privacy protection. For the
concept of partition, we consider that it more convenient
and flexible for users to perform some operations. Par-
titioned GPAKE defines natural applications in specific
scenarios. For example, in the Internet of Things (IoT)
cluster or a smart home which including many smart de-
vices, and these devices belonging to the same user may
need to establish a shared key (assuming that all devices
of a given user have been initialized with the same pass-
word). In addition, in multi-user scenarios, different IoT
or a smart home clusters belonging to different users will
coexist, and key establishment in one group should not
affect other groups. If a user (or even a subgroup) runs
a protocol with a mismatched password, the shared pass-
word must be updated, which can be a very expensive pro-
cess. For the other concept of security attribute, the pri-
vacy protection, which can ensure all the messages trans-
mitting on the public channel are not plaintext. So, we
call the new protocol PPP-GPAKE (partitioned and pri-
vacy protection GPAKE) which tolerates users that run
the protocol on different passwords and owns the privacy
protection. It is easy to see that PPP-GPAKE setting
avoids the above problems and reduce the waiting time of
users. We introduce here the new notion of PPP-GPAKE,
aiming at designs suited for scenarios where the specific
group of users sharing a password. That is, if there is a
user password error, other users do not need to wait, and
immediately form a new shared password.

Although the PAKE protocols have been studied to
deal with multiple participants in a single domain for
many years [5,7,13], it has many details are worth study-
ing. Subsequently, with the increasing popularity of vari-
ous types of group communication applications [9], includ-
ing partitioned and privacy protection, a new research di-
rection for PAKE protocols has moved gradually. In the
next section, we discuss related work on PAKE protocols.
Then we present our PPP-PAKE protocol, followed by
the security proof. We analyze the performance of the
proposed protocol and draw our concluding remarks at
the end.

2 Security Model and Security
Goals

Assuming that a public password dictionary D ⊆ {01}∗
to be efficiently identifiable and of constant or polyno-

mial size. Especially, we assume that D can be enumer-
ated by a polynomial bounded opponent.The set S =
{U1, . . . , UN} of users is partitioned in l ≥ 2 disjoint sub-
sets, such that S = U1 ∪ U2 . . . ∪ Ul. All users in Uδ,
for δ = 1, . . . , l, share a public password pwδ ∈ D, with
pwδ 6= pwγ given δ 6=γ ∈ {1, . . . , l}. For simplicity’s sake,
we assume that all passwords are randomly selected from
D, and are represented by a bit string of the same size
(denoted by K).

2.1 Communication Model and Adver-
sarial Capabilities

Protocol instances. Users are modeled as probabilistic
polynomial time (ppt) Turing machines. Every user

U ∈ S parallelly and we use
∏j
i to consult the jth

instance of user i, which can be regarded as a process
executed by Ui. Every instance we distribute seven
variables which are shown in Table 1. For more de-
tails on the variable usage, we refer to the work of
Bellare et al. In [2].

Communication network. Assume that any point-to-
point connections between users are available. The
network is, nevertheless, non-private and completely
asynchronous. More specifically, it is controlled by
the opponent, who may delay, insert and delete mes-
sages at will.

Adversarial capabilities. We limit to probabilistic poly-
nomial time (ppt) adversaries. The capabilities of
an opponent A are made explicit through a number
of oracles allowing A to communicate with protocol
instances run by the users:

Send(Ui, j,M). This oracle sends message M to the

instance
∏j
i of Ui and returns the reply generated

by this example. If A queries this oracle with an
unused example

∏j
i and M being the set of users

{Ui1 , . . . , Uiµ} ⊆ S, going in for the protocol (in-

cluding Ui), then the flag usedji is set, and the first

protocol message of
∏j
i for initializing a protocol run

involving {Ui1 , . . . , Uiµ} is returned.

Execute
(
{
∏j1
i1
, . . . ,

∏jµ
iµ
}
)

. This oracle executes a com-

plete protocol that run between specified unused in-
stances of the respective users. The opponent gets
a transcript of all messages sent over the network.
A query to the Execute oracle should reflect passive
eavesdropping. Especially, this Oracle can’t guess
passwords online.

Reveal(Ui, j). Hand over the session key skji .

Test(Ui, j). Active opponent A is only allowed to use
one query of this form. Provided that skji is de-

fined (i.e.accji = true and skji 6=null), A can issue
this query at any time when being activated. Then

International Journal of Network Security, First Online Apr. 6, 2020 (VDOI: 1816-3548-2020-00016) 3

Table 1: Variables

with possibility 1/2 the session key skji and with pos-
sibility 1/2, a evenly chosen random session key is
returned.

Corrupt (Ui). Returns the password Corrupt (Ui) held
by Ui.

2.2 Correctness and Key Secrecy

2.2.1 Correctness

Our definition of correctness expands the standard one
in GPAKE. Namely, without active countermeasure jam-
ming, it should be the case that users holding matching
passwords eventually set up a public session key as ex-
pected and assigning it the same name (sid). In addition,
messages from users with mismatched password should
not interrupt session key computations.

Definition 1. (Correctness). Let D be a dictionary and S
be a group of users as described earlier. After that, a par-
titioned group password-based key establishment protocol
P is correct if there is a passive adversary A,i.e. A only
uses the Execute oracle—a single execution of the protocol
among Ui1 , . . . , Uiµ involves µ instances

∏j1
i1
, . . . ,

∏jµ
iµ

and
assures that with overwhelming possibility all examples:

• Accept, i.e.accj1i1 = · · ·=accjµiµ= true;

• Users belonging to the same subset Uτ the password-
induced partition on S have accepted the same session
key associated with the common session and partner
identifier, that is ∀s, r ∈ {1, . . . , µ} whenever Uis ,
Uir ∈ Uτ , it holds skjsis=skjrir 6= NULL, sidjsis = sidjrir
and

pidjsis = pidjrir 6= NULL.

(Note that if Uis is the only user in Uτ , then she will
end up with unique pidjsis , sidjsisand skjsis .)

2.2.2 Key Secrecy

Here we define the main security concepts of partitioned
GPAKE protocols. In order to do so, we introduce the

concepts of cooperation and novelty to indicate which in-
stances are associated in a common protocol session, and
how to exclude trivial attacks, separately.

Partnering. We adopt the concept of cooperation
from [11] where instances

∏j
i ,
∏m
t are partnered if

sidji = sidmt ,pidji = pidmt and accji = accmt = true.
Nevertheless, in [1], pid lists user instances engag-
ing in a public protocol execution. In our scene, pid
explicits instances that go in for a common proto-
col execution and share a password. In other words,
in [3] and in other GPAKE suggests, a user defines
pid at the beginning of the protocol, while in our
settings, a user finds pid at the end of the protocol.

Note that the above concept of cooperation defines an
equivalence relation on the set of possible instances
(namely, it is reflexive, symmetric and transitive). In
addition, to avoid trivial situations we assume that
an instance

∏j
i always accepts the session key con-

structed at the end of the corresponding protocol
operation, if no deviation from the protocol speci-
fication occurs. In addition, Non-confrontational in-
terference, all users in the same protocol session be-
longing to the same subset Uk, i.e. with the same
password, should come up with the same session key,
store it under the same session identifier and know
whom they share it with.

Freshness. This notion helps specifying under which con-
ditions a Test-query can be executed by the oppo-
nent in the security experiment. An instance is called
fresh if the opponent never made one of the following
queries:

∏j
i :

Corrupt(Ut) to any Ut holding the same password as
Ut(i.e. so that Ui and Ut are both in Uτ for some
τ ∈ {1, . . . , l});

Reveal(Ut,m) with
∏j
i and

∏m
t being partnered.

The concept of novelty allows us to rule out trivial
attacks. Especially, displaying a session key from an
instance

∏j
i evidently yields the session key of all

International Journal of Network Security, First Online Apr. 6, 2020 (VDOI: 1816-3548-2020-00016) 4

instances partnered with
∏j
i and, hence, this kind

of ‘attack’ is not take the security definition into ac-
count. In addition, note that this freshness definition
means that corrupting users with different password
from the one held by the uses specified in the Test
query should be of no help to their opponents.

Key secrecy. Now that we have introduced cooperation
and new concepts, we are ready to fully determine
key confidentiality. As classic in password-based pro-
tocols, we observe that since the dictionary D has
polynomial size we cannot prevent an adversary from
correctly guessing a password pw ∈ D used by any
user. Hence, our goal is to limit the opponent A to
verify password guesses online.

In the above setting, a protocol P is established for a fixed
group key, let Succ(`) be the possibility that an opponent

A queries Test on a new instance
∏j
i and guesses correctly

the bit b used by the Test oracle in a moment when
∏j
i

is still fresh. Now we identify the advantages of A as the
function

AdvA(`) := |2Succ(`)− 1|.

We now introduce a function ε to capture the weaknesses
that may due to the employed authentication technique;
namely, as the opponent may guess passwords online, ε
will explicit a bound on A’s probability of guessing a
shared password.

Definition 2. (Key-secrecy). Let P be a correct par-
titioned group password-authenticated key establishment
protocol, with D and S as mentioned above. Let A be a
probabilistic polynomial time opponent with access to the
Execute, Send, Reveal and Corrupt oracles. We say that
P provides key secrecy, if for each such A, running in the
experiment described in Section 2.1 and querying the Send
oracle to at most q instances, the following inequality ap-
ply to some negligible function negl and some function ε
which is at most linear in its second variable q:

AdvA(`) ≤ ε(`, q)+negl(`).

Note that assuming passwords are chosen randomly and
uniformly, and in each online attack, the opponent can
only check a constant number of passwords, it holds
ε(`, q) = O(q

|D|).

Remark 1. Typically, in GAKE, the Corrupt oracle is
used to model different flavors of forward security, i.e.
to establish to what extent the leakage of authentication
keys compromises the security of previously agreed session
keys. In our scenario, however, corrupted users are to be
understood as adversaries who might actually be legitimate
members of a different password-defined subset Uδ. Thus,
our model implicitly states that everyone who is not in
the same password defined subset is understood as under
adversarial control.

2.3 Password Privacy and Privacy-
Preserving

Unofficially, password-privacy ensures that an active op-
ponent should not get any information about the use of
passwords by legitimate users, so he should not even be
able to tell if a given set of users really share the same
password or not, unless he has guessed the involved pass-
word(s). Basically, if we consider the partition on the
users set caused by the password allocation, then the op-
ponents should not know about these partitions just by
guessing wildly.

Interestingly, this concept is not relevant in many
GPAKE proposals since, according to design, messages
constructed from a non-matching password are typically
recognized as maliciously generated and cause an abort
(see for instance [6]). In fact, in this case, an active oppo-
nent may learn if two users Ui and Ut share the same pass-
word by starting a new session involving Ut and replaying
messages generated by Ut in different executions. Now,
the adversary just observes whether this rouge session is
aborted or not. In contrast, in partitioned GPAKE pro-
tocols, executions always succeed and at their end, each
participant eventually gets a valid key. However, only par-
ticipants sharing the same password will share the same
session key.

Our concept of password-privacy is rather inspired to
that of affiliation hiding [10, 12] considered in authenti-
cated key exchange. Association hiding means that an
active opponent should not be able to obtain any infor-
mation about group membership through a protocol exe-
cution (without considering trivial attacks where the op-
ponent shares the affiliation of the victims). Especially,
an opponent should not tell whether two users share the
same affiliation or not. In our scenario, this means en-
suring that no active opponent has access to information
about the user’s shared password, assuming he has not
guessed the password used by any/some of them.

We use an indistinguishable game to simulate password
privacy where the opponent A interacts with a challenger.
First, he chooses the victim subgroup U ⊆ S and two
partitions p0 and p1 of it. Then the challenger randomly
chooses one of the two partitions and assigns passwords
(Random uniform selection) consistently with the corre-
sponding subgroups. A wins if it can tell which of the
two partitions has actually been chosen by the challenger,
under the restriction that A cannot query the Reveal or
Damage oracles on any of the users in U. We emphasize
that in our game we do not assume passwords of all the
remaining users in S\U ; These passwords can be even
chosen by the opponent (i.e. the opponent can simulate
any of these users himself).

Definition 3. (Password-privacy). Let P be accurate
partitioned GPAKE protocol. Consider a public dictio-
nary D and (potential) set of users S = {U1, . . . , UN},
where N is polynomial in the security parameter `. Let
A be a probabilistic polynomial time adversary interacting
with a challenger Ch in the following game:

International Journal of Network Security, First Online Apr. 6, 2020 (VDOI: 1816-3548-2020-00016) 5

1) A selects a set of users U ⊆ S, and two partitions p0
and p1 of U.

2) Ch chooses a bit b ∈ {0, 1} uniformly at random and
assigns a password, also chosen uniformly from the
dictionary at random, for each subgroup of the par-
tition pb. In addition, he follows the specification of
p.

3) A, equipped with Send and Execute, must output a
guess.

We say that P achieves password-privacy if every p.p.t.
A wins the above password-privacy game with (at most)
negligible probability over a random guess, provided he
did not guess any password from a user in U. More pre-
cisely, for every p.p.t., let Succ(`) be the probability that
an adversary A guesses correctly the bit b selected by Ch.
Now we define A’s advantage as the function

AdvpwpriA (`) := |2.Succ(`)− 1|.

Let q denote the number of instances to which A has made
a Send query. Then a protocol P has password-privacy if
the following holds for some negligible function negl and
some function ε which is at most linear in q,

AdvpwpriA (`) ≤ ε(`, q)+negl(`),

our protocol has the privacy-preserving property which
is realized by initiating two main ideas: firstly, the two
partitions p0 and p1 can exchange the identity and nonces
with an encrypted message using the shared password.
And secondly, they can record the data in the temporary
database as Table.3 does.

Definition 4. (Privacy-preserving). Let P be a correct
partitioned GPAKE protocol. Consider a public iden-
tity dictionary ĨD and (potential) set of users S =
{U1, . . . , UN}, where N is polynomial in the safety param-
eter `. Let A be a probabilistic polynomial time adversary
interacting with a challenger Ch in the following game:

1) A selects a set of users U ⊆ S, and two partitions p0
and p1 of U.

2) Ch chooses a bit b ∈ {0, 1} uniformly at random and
assigns an identity, also be randomly selected from
the identity dictionary ĨD, for every subgroup of the
partition pb. Further, he follows the specification
of p.

3) A, equipped with Send and Execute, must output a
guess.

We say that P achieves Privacy-preserving if every
p.p.t. A wins the above Privacy-preserving game with
(at most) negligible possibility over a random guess, the
premise is that he did not guess any identity from a user
in U. More precisely, for every p.p.t., let Succ(`) be op-
ponent A who correctly guesses the probability of bit B

chosen by ch. Now we define A’s advantage as the func-
tion AdvidpriA (`) := |2Succ(`)− 1|.

Let q denote the number of instances to which A has
made a Send query. Then a protocol P has password-
privacy if the following holds for some negligible function
negl and some function ε which is at most linear in q,
AdvidpriA (`) ≤ ε(`, q)+negl(`).

3 The Proposed PPP-GPAKE
Protocol

3.1 The Settings and Notations

Now we are ready to show our concrete construction, as
shown in Figure 1. And the Notations are described in Ta-
ble 2. First of all, we introduce the main building blocks
of our scheme:

1) A hash function H, which will be modeled as a ran-
dom oracle; we assume it to range on {0, 1}d, for d
polynomial in the security parameter `,

2) A private key encryption scheme
∏

= (KEYGEN,
ENC, DEC), assumed to be secure in the unforgiv-
able sense of existence and achieving chosen cipher-
text security (see [8] and Section 3.1 above). For each
choice of the security parameter, we will denote by ρ
and C the corresponding polynomial sized plaintext
and ciphertext spaces, and assume ρ to be an additive
group. Furthermore, we will assume that KEYGEN
selects keys uniformly at random from the range of
the random oracle H.

3) An ideal cipher ε : D × G 7→ Ĝ, ε : ĨD × G 7→ Ĝ,

where D is the password dictionary and ĨD is the
identity dictionary, G is a cyclic group of order q
(polynomial in) and Ĝ is a finite set of q elements.

3.2 The Construction

Figure 1 illus trates the process of authenticated key
agreement phase.

Round 1. When N participants want to create a
group session key, each Ui chooses uniformly a
random value xi ∈ {1, . . . , q − 1} and broadcasts
Yi = εpwi(Ui||gxi). Each Ui will receive the mes-
sages (Yt). If ε−1pwi(Yt) = Ut||Xt 6= ⊥, then Ui
sets sidi,t = Ui||Yi||Ut||Yt and computes ski,t =
H(Ui||Ut||Xi||Xt||Xxi

t). Otherwise Ui selects ski,t
equably at random in the range of H. Finally,
for every Ut who holds a same two-party key as
Ui, and user Ui defines the two-party key ski,t =
H(Ui||Ut||gxi ||gxt ||gxixt), and a matching session
identifier. Eventually, the user Ui stores sidi,t and
the two-party key into a local temporary database,
and the format are shown in the Table 3.

International Journal of Network Security, First Online Apr. 6, 2020 (VDOI: 1816-3548-2020-00016) 6

Table 2: Notations

Round 2. In the Round 2, each user Ui selects uniformly
at random a value ri ∈ {1, . . . , q − 1} and broadcasts
Mit = (sid′i,t, ait = ENCski,t(ri)), where sid′i,t =
Yi||Yt. For each t 6= i, receiving the message Mit,
Ut will compare sid′i,t with the database’s records for
getting the identity information Ui||Ut. Then, user
Ut compute cit = DECski,t(ati) using ski,t and sets
pid = {i}∪ {t : cit 6= {ri,⊥}} for every received mes-
sages (sid′t,i, ati). Then select the database to get the
identity information. Further, for each t ∈ pid, t 6= i,
it sets r∗t = cit and also r∗t = ri. Next is the knowl-
edge of session key and session identifier definitions.
User Ui sets acci = true, derives the (sub-group) key

as the addition ski =
∑
l∈pid

r∗l , and also the session

identifierb sidi = {sidi,t||ai,t}t∈pid
i
||pidi.

If any authenticated process fails, the protocol will be
terminated immediately.

4 Security Analysis

4.1 Tools

4.1.1 Bellare, Pointcheval and Rogaway PAKE

Our major building block is the EKE2 PAKE proposed
by Bellare et al. in [2] which is secure in the so-called
ideal cryptographic model (see [4]). In this model, it is
assumed that there exists a publicly accessible random
block cipher with a k-bit key and a n-bit input/output,
that is random selection of all block ciphers in this form.
Besides, it is necessary to assume the existence of ideal
random functions, that is to say, we will model the hash
function H used in the key derivation process as a random
oracle [14]. It has been proved that the two models are
equivalent, as evidenced in [8].

4.1.2 Unforgeable Encryption

For the choice of the second building block, a symmetric
encryption scheme

∏
, we will choose structure that fully

reflects the strong concept of unforgeability; Namely, we

should not even allow our opponents to generate any new
valid ciphertext without the private key. Such property
is defined in [14] as existential unforgeability; We rewrite
Definition 5 from that paper here:

Definition 5. Let
∏

= (KEYGEN,ENC, DEC) be a
private-key encryption scheme. Let ` be the security pa-
rameter and A be any pptm algorithm. Define

AdvexistA,
∏ (`) == Pr[sk ← KEY GEN(1`); y ← A :

DECsk(y) 6= ⊥]. At this, y is produced by the adversary
A which may use an encryption oracle εsk, yet y must
not have been directly returned by εsk. We say that

∏
is

(t, p, b; δ)-secure in the sense of existential unforgeability if
for any adversary A which runs in time at most t and asks
at most p queries to the encryption oracle, these totaling
at most b bits, we have AdvexistA,

∏ (`) ≤ δ(`). Assuming t,
p, and b, are polynomial in `, if δ is negligible in ` we will
simply say that

∏
is an unforgeable encryption scheme.

Furthermore, in Theorem 1 of [14], it is proven that
unforgeability along with chosen plaintext security means
adaptive chosen ciphertext security. For our generic con-
struction, we will make use of a symmetric key encryp-
tion scheme

∏
secure in this sense, therefore, we may

assume that the adversary will cannot produce any valid
ciphertext, nor to gain any information on the plaintexts
underlying encrypted values. As evidenced in [14], such
encryption scheme

∏
may simply be derived by instan-

tiating appropriate block ciphers with unforgettable en-
cryption patterns.

4.2 Security Proof

Theorem 1. Let
∏

= (KEYGEN, ENC, DEC) be a sym-
metric encryption scheme which is both unforgeable and
chosen plaintext semantically-secure. Then, the proto-
col from Figure 1 is a correct partitioned password based
group key agreement achieving key secrecy as defined in
Definition 2 and password-privacy as defined in Definition
3 under the computational Diffie–Hellman assumption in
group G in the random oracle/ideal cipher model.

Correctness. In an true implementation of the protocol,
it is easy to verify that all participants in the protocol

International Journal of Network Security, First Online Apr. 6, 2020 (VDOI: 1816-3548-2020-00016) 7

Table 3: The temporary database in the PPP-GPAKE protocol

Figure 1: An efficient partitioned GPAKE with privacy
protection (PPP-GPAKE)

will terminate through accepting and computing the
same session identifier and session key as participants
with the same password.

Key secrecy. Evidence from several games, where a
challenger interacts with the opponent confronting
him with a counterfeit Test-challenge in the spirit of
Definition 2. From game to game, the Challenger be-
haves differently from the previous one, with the cor-
responding effect on A’s success probability. Follow-
ing standard notation, we denote by Adv(A,Gi) the
opponent’s advantage when confronted with Game i.
The security parameter is denoted by `.

In the sequel, we denote by qexe the number of Exe-
cute calls made by the adversary. Also q will indicate
the number of instances to which the opponent has
launched a Send query, therefore, it is the number of
instances that have suffered on-line attacks. In like
wise,qro will express the number of queries A makes
to the hash function H.

Game 0. This first game corresponds to a real at-
tack, in which all the parameters are selected
according to the actual scheme. By definition,

Adv(A,Gi) = Adv(A).

Game 1. We assume that the hash function H is
simulated as a Random Oracle. Namely, each
time a new query α is requested, the simulator
selects u.a.r a value ha from the range of H and
stores the pair α, ha in a table (from now on,
the H-list). Should the value α be queried again,
the simulator will look in the H-list and forward
ha as answer.

In addition, we explicit the ideal cipher simula-
tion here. For a given password pw, the simula-
tor will maintain an ICpw-list in which for every
query (pw,g) he stores a different value ĝ which
is selected uniformly at random in Ĝ. Similarly,
he also maintains a list capturing the decryption
calls done to the Ideal Cipher (Called IC−1pw-list).

Thus, a bijection σpw : G 7→ Ĝ and list inverse
are actually explicited by the two lists ICpw-list,
IC−1pw-list. The Random Oracle and the Ideal Ci-
pher assumptions are made explicit by assuming

Adv(A,G1) = Adv(A,G0).

Game 2. In this game, we exclude certain conflicts
of values chosen uniformly at random in differ-
ent conversations. Namely, this game aborts in
case the same exponent in Round 1 or the same
random contribution in Round 2 is selected in
different conversations by two (non-necessarily
distinct) honest users. Similarly, we exclude the
event that an Hcollision occurs at the time of ex-
tracting different two-party keys or session iden-
tifiers at the end of Round 1 in different protocol
executions.

It is not hard to see that the difference between
the two games

|Adv(A,G2)−Adv(A,G1)|,

the probability of ‘partial collisions’ on indepen-
dent transcripts is bounded, which is in turn
bounded by

q2ro
2d

+N2

[
1

|G|
+

1

|P|

]
,

where P is the plaintext space for
∏

, from where
the nonces are selected in Round 1.

International Journal of Network Security, First Online Apr. 6, 2020 (VDOI: 1816-3548-2020-00016) 8

Game 3. Consider the event that A queries the ran-
dom oracle on the 5-tuple

(Ui ‖ Ut ‖ Xi ‖ Xt ‖ Z),

such that both the values Xi and Xt were gen-
erated by the simulator during the game and
Z=Xxi

t (essentially, if A queries the oracle on
a valid CDH tuple). If such event (that we
call Bad) happens, the simulation is aborted.
Clearly,

|Adv(A,G3)−Adv(A,G2)| ≤ P (Bad).

It is easy to see that for any adversary A that
cause the Bad event to happen it is possible to
construct another adversary B against the CDH
assumption. The reduction is rather straightfor-
ward B, for inputting gx, gy, chooses a random
index q∗ ← {1, . . . , qexe} and two user indices i,
t ← {1, . . . , N} also at random. Then, in the
q∗th protocol execution requested by the adver-
sary B sets Xi = gx and Xt = gy for the users
i and t, respectively. Finally, in the end of the
game, it selects one random entry from H-list
such that among the ones with Xi = gx and
Xt = gy, and returns the last value Z of the
tuple. Clearly, if the event Bad occurs, and B
guessed correctly the indices i, t, and q∗, then
B found a solution for the CDH problem. Oth-
erwise, if any of the guess was wrong, B aborts.
It is not hard to see that

p(Bad)× 1

qexe

1

N2

1

qro
≤ AdvCDHG,g (`),

where AdvCDHG,g (`) is the probability that B
has of winning a computational Diffie–Hellman
challenge over G with generator g.

Game 4. Consider the event that A queries the ran-
dom oracle on the 5-tuple

(Ui ‖ Ut ‖ Xi ‖ Xt ‖ Z),

such that the value Xt was generated by the
simulator during the game, pw∗ is the (ran-
dom) password held by Ut whereas Xi is such
that A made a query to the ideal cipher on
input (pw∗, Xi) to get Yi, and a Send query
with the input (Yi), because our scheme has pri-
vacy protection and for any adversary A that
they just input the Yi without the Identity of
any user. If such event (that we call Bad∗)
happens, the simulation is aborted. Clearly,
|Adv(A,G4)−Adv(A,G3)| ≤ P (Bad∗). Now,
the probability of the event Bad∗ is bounded
by the probability of a password guess, which
is O(q/|D|). We remark that from this point
on in the simulation all H queries of the form
(Ui ‖ Ut ‖ Xi ‖ Xt ‖ Xxt

i), where users Ui

and Ut sharing a password pw∗ are either fully
generated by the adversary or fully generated
by the challenger. This means that for any
two users sharing a password pw∗ which has
not been guessed by the adversary the corre-
sponding two-party keys will be indistinguish-
able from random.

Game 5. This game deals with adversaries that
only modify messages in Round 2, for the tested
instance

∏j
i . Precisely, consider any pair of

users (Ui, Ut) for which the adversary had not
made a random oracle query as the ones ‘ex-
cluded’ in the previous two games. Then if in
the second part of the protocol execution the
adversary A sends a valid message M2

it that de-
crypts correctly and is not a replay, then the
game aborts.

With a simple reduction to the unforgeability
of the encryption scheme M2

it, it is possible to
show that

|Adv(A,G5)−Adv(A,G4)| ≤ AdvexistA
∏ (`).

Where AdvexistA
∏ (`) ≤ δ(`), for some negligible

function δ.

Game 6. Now, we modify the Execute and Send
simulation in that we construct messages ait as
encryptions of 0, i.e. ait := ENCskit(0). Pre-
cisely, this change is for all pairs of users (Ui, Ut)
for which the adversary had not made a random
oracle query as the ones excluded in the previ-
ous games. By relying on the CCA-security of∏

, one can argue that

|Adv(A,G6)−Adv(A,G5)| ≤ AdvCCAA
∏ (`).

After making this last change, the session key of
a fresh session is completely random and inde-
pendent from the simulated protocol transcript.
Therefore, Succ(`) = 1/2, and the proof fol-
lows by putting together the bounds between
the games.

Password privacy. The security proof for password pri-
vacy proceeds very similar to the one of key secrecy
given above. The main idea is that after applying
similar game changes as for key secrecy, the protocol
messages become independent of the users passwords.

The games are defined as follows.

Game 0. This first game corresponds to a real at-
tack, in which all the parameters are cho-
sen as in the actual scheme. By definition,
Adv(A,G0) = Adv(A).

Game 1. This is the same as Game 1 in the proof of
Theorem 1. It simply makes explicit the simula-
tion of the random oracle and the ideal cipher.

Adv(A,G1) = Adv(A,G0).

International Journal of Network Security, First Online Apr. 6, 2020 (VDOI: 1816-3548-2020-00016) 9

Game 2. This is the same as Game 2 in the proof
of Theorem 1, and thus

|Adv(A,G2)−Adv(A,G1)| ≤ q2ro
2d

+N2

[
1

|G|
+

1

|P |

]
where P is the plaintext space for

∏
, from where

the nonces are selected in Round 1.

Game 3. This is the same as Game 3 in the proof
of Theorem 1, and thus

|Adv(A,G3)−Adv(A,G2)|
≤ qexe ·N2 · qro ·AdvCDHG,g (`).

Game 4. This proceeds similarly to Game 4 in the
proof of Theorem 1. Let us consider the event
that A queries the random oracle on the 5-tuple
(Ui ‖ Ut ‖ Xi ‖ Xt ‖ Z),such that the value
Xt was generated by the simulator during the
game, pw∗t is the (random) password held by Ut,
whereas Xi is such that A made a query to the
ideal cipher on input (pw∗t , Xi) to get Yi, and a
Send query with the input (Ui, Yi). If such event
(that we call Bad∗) happens, the simulation is
aborted. The difference between this and the
previous game lies in the occurrence of event
Bad∗ whose probability is bounded by that of a
password guess. Therefore,

|Adv(A,G4)−Adv(A,G3)| ≤ P (Bad∗)

= O

[
q

|D|

]
.

Game 5. This is the same as Game 5 in the proof
of Theorem 3.2, and thus

|Adv(A,G5)−Adv(A,G4)| ≤ AdvCDHG,g (`),

where AdvCDHG,g (`) ≤ δ(`) for some negligible
function δ.

Game 6. Finally, in this game, the challenger
modifies the Execute and Send simulation
by constructing messages ait as encryptions
of randomly selected values Rit, i.e.ait :=
ENCskit(Rit), while the session key is still com-
puted using the randomly sampled values ri.
Based on the CCA-security of

∏
one can argue

that

|Adv(A,G6)−Adv(A,G5)| ≤ AdvCCAA,
∏ (`).

In addition, after making this last change, the pro-
tocol messages in the simulation are independent
of the password selection, and, in particular, are
distributed identically in both the cases when the
users in U share the same password pw∗ or have
each a different password. So, the probability that
the adversary succeeds in correctly guessing the bit

b in this game is 1/2 − Succ(`) = 1/2. There-
fore, by putting together the various bounds of the
game differences, we have that the chances of A to
win the password-privacy game are only negligibly
above 1/2 +O [q/|D|].

Privacy-preserving. The process of proof is the same
as the process of Password privacy. So, we can get
the opportunity of A to win the Privacy-preserving

game are only negligibly above 1/2 +O
[
q/|ĨD|

]
.

5 Conclusion

This work presents a PPP-GPAKE protocol which firstly
combines group Password-Based key exchange protocol
with the security attributes of privacy and partitioned
which can tolerates the user entered the wrong password.
The first key idea is using a temporary database to make
the privacy of our scheme possible, and the other key
idea is using subgroup to compute the middle two-party
session keys for tolerating the entered wrong passwords
of some users. Additionally, the proposed scheme is no
need pre-shared secret key which can make the proposed
protocol become more practical. Moreover, the proposed
protocol has been shown secure under the random oracle
model. In the future, we will study the PPP-GPAKE un-
der the standard model instead of random oracle model,
and give the PPP-GPAKE more secure properties with
high efficiency.

Acknowledgements

This work was supported by the Liaoning Provincial Nat-
ural Science Foundation of China (Grant No. 2019-MS-
286), and Shenyang Science & Technology Innovation
Talents Program for Young and Middle-aged Scientists
(2019).

References

[1] M. Abdalla, J. M. Bohli, M. I. G. Vasco, R. Stein-
wandt, ”(Password) Authenticated key establish-
ment: From 2-party to group,” in Lecture Notes in
Computer Science (TCC’07), pp. 499–514, 2007.

[2] S. M. Bellovin, M. Merritt, ”Encrypted key ex-
change: Password-based protocols secure against dic-
tionary attacks,” in Proceedings IEEE Computer So-
ciety Symposium on Research in Security and Pri-
vacy, pp. 489-890, 1992.

[3] J. Black, P. Rogaway, ”Ciphers with arbitrary finite
domains,” in Ciphers with Arbitrary Finite Domains,
pp. 114–130, 2002.

[4] P. Chaidos, J. Groth, ”Making sigma-protocols non-
interactive without random oracles,” in Part of the
Lecture Notes in Computer Science Book Series, pp.
650-670, 2015.

International Journal of Network Security, First Online Apr. 6, 2020 (VDOI: 1816-3548-2020-00016) 10

[5] M. Chuangui, W. Fushan, G. Fengxiu, ”Efficient
client-to-client password authenticated key exchange
based on RSA,” in Proceedings of the 5th IEEE Inter-
national Conference on Intelligent Networking and
Collaborative Systems, pp. 233–238, 2013.

[6] R. Gelles, R. Ostrovsky, and K. Winoto, ”Multi-
party proximity testing with dishonest majority from
equality testing,” in International Colloquium on Au-
tomata, Languages, and Programming, pp. 537–548,
2012.

[7] X. Hu, Z. Zhang, ”Cryptanalysis and enhancement of
a chaotic maps-based three-party password authenti-
cated key exchange protocol,” Nonlinear Dynamics,
vol. 78, no. 2, pp. 1293-1300, 2014.

[8] J. Katz, M. Yung, ”Unforgeable encryption and
chosen ciphertext secure modes of operation,” in
Fast Software Encryption (FSE’00), Lecture Notes
in Computer Science, , pp. 284–299, 2000.

[9] L. J. Liao, Z. I. Zhang, L. H. Zhu, ”Computa-
tionally sound symbolic security reduction analysis
of the group key exchange protocols using bilinear
pairings,” Information Sciences, vol. 20, no. 9, pp.
93–112, 2012.

[10] M. Manulis, B. Poettering and G. Tsudik, ”Affili-
ationHiding key exchange with untrusted group au-
thorities,” in Lecture Notes in Computer Science, pp.
402–419, 2010.

[11] V. S. Naresh, S. Reddi, N. V. E. S. Murthy, ”A
provably secure cluster-based hybrid hierarchical
group key agreement for large wireless ad hoc net-
works,” Human-centric Computing and Information
Sciences,, vol. 9, no. 1, pp. 1-32, 2019.

[12] A. Rivero-Garćıa, I. Santos-González, J. Munilla,
M. Burmester, P. Caballero-Gil, ”Secure lightweight
password authenticated key exchange for heteroge-
neous wireless sensor networks,” Information Sys-
tems, vol. 88, no. 101423, 2019. (https://doi.org/
10.1016/j.is.2019.101423)

[13] B. Xiang, C. M. Chen, K. H. Wang, K. H. Yeh,
T. Y. Wu, ”Attacks and solutions on a three-party
password-based authenticated key exchange proto-

col for wireless communications,” Journal of Ambi-
ent Intelligence and Humanized Computing, vol. 10,
no. 8, pp. 3133-3142, 2019.

[14] X. Yang, X. P. Sheng, M. Zhang, ”A certificate-
less signature scheme with strong unforgeability in
the random oracle model,” Journal of Computational
Methods in Sciences and Engineering, vol. 18, no. 3,
pp. 715-724, 2018.

Biography

Hongfeng Zhu, obtained his Ph.D. degree in Informa-
tion Science and Engineering from Northeastern Univer-
sity. Hongfeng Zhu is a full professor of the Kexin soft-
ware college at Shenyang Normal University. He is also a
master’s supervisor. He has research interests in wireless
networks, social networks, network security and quantum
cryptography. Dr. Zhu had published more than 60 in-
ternational journal and international conference papers
on the above research fields.

Yuanle Zhang, a postgraduate studying at Shenyang
Normal University. She has researched interests in net-
work security and quantum cryptography. Under the
guidance of the teacher, she has published one article in
EI journals.

Xueying Wang, obtained her Ph.D. degree in Manage-
ment Science and Engineering from Wuhan University.
Xueying Wang is a Dean of the Kexin software college at
Shenyang Normal University. She is also a full professor
and a master’s supervisor. She has research interests in
cloud computing, social networks, network security and
E-commerce. Dr. Wang had published more than 40 in-
ternational journal papers on the above research fields.

Liwei Wang, a postgraduate studying at Shenyang Nor-
mal University. She has researched interests in network
security and quantum cryptography. Under the guidance
of the teacher, she has published one article in EI journals.

