
International Journal of Network Security, First Online Apr. 8, 2020 (VDOI: 1816-3548-2020-00019) 1

Detect Fast-Flux Domain Name with DGA
through IP Fluctuation

Hongling Jiang1 and Jinzhi Lin2

(Corresponding author: Hongling Jiang)

School of Information Management, Beijing Information Science and Technology University1

No. 12 Xiaoying East Qinghe Road, Haidian District, Beijing, 10092, China

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences2

Shenzhen, 518055, China

(Email: hellojhl@163.com)

(Received July 28, 2019; Revised and Accepted Dec. 6, 2019; First Online Apr. 8, 2020)

Abstract

Many malicious networks use the DNS domain names
to protect their networks. One of the techniques is the
fast-flux, which maps many IP addresses to a domain
name and uses recruited hosts to redirect users’ requests.
Fast-flux is powerful in concealing the malicious networks,
thus it is widely used by attackers. Although diverse ap-
proaches have been proposed to detect the fast-flux do-
main names, they still suffer from limitations like either
having heavy computations or be easy to be noticed by
attackers. According to our research, the IP addresses of
the fast-flux domain name are unstable. In this paper,
we design a metric called domain score to measure the
IP fluctuation. Meanwhile, we consider the feature of the
domain name itself. A system called FluDD is proposed
to detect the fast-flux domain name with DGA (Domain
Generation Algorithm). Experimental results show that
FluDD can achieve good performance and the true posi-
tive rate reaches to 99.6% and the minimal false positive
rate is 0.

Keywords: DGA; DNS; Domain Name; Fast-Flux; IP
Fluctuation

1 Introduction

In the early stage, malicious codes usually contained the
IP addresses of the C&C servers. Once the IP addresses
are detected, the whole malicious network could be shut
down. Nowadays DNS (Domain Name System) plays an
important role in the Internet [14]. Many internet appli-
cations depend on DNS. At the same time, many attacks
leverage DNS to be more resilient [29], such as botnet,
APT (Advanced Persistent Threat), spam, phishing sites
and so on [12,22,28]. Attackers use DNS to obtain the IP
addresses of their servers. In this way, the attackers can
hide their Command and Control (C&C) servers [16].

Recently, many attackers use the so-called fast-flux
technique to protect their networks. The fast-flux tech-
nique maps a set of IP addresses to a domain name.
When a client query a domain name, a set of different
IP addresses will be returned. These IP addresses are
corresponding to host agents, which redirect the client’s
requests to the real C&C servers. Ordinary, the IP set
includes hundreds and thousands of IP addresses, which
can be changed rapidly. Even some of them could be
detected as malicious and blocked, many others can still
provide services. The fast-flux technique makes it hard
to detect the malicious networks. Besides, some attack-
ers use DGA (Domain Generation Algorithm) to generate
domain names. The fast-flux combined with DGA makes
it more difficult to detect the malicious domain names.

Many solutions have been proposed to detect the fast-
flux domain names, but they still face different problems.
Existing approaches can be divided into two categories:
passive and active. For example, the passive DNS traffic
based approaches suffer from heavy computations and pri-
vacy concerns [10]. Some of the active approaches may be
noticed by attackers as they send requests to the servers
regularly. Meanwhile, some approaches would be escaped
by attackers [13].

To detect fast-flux with DGA, in this paper, we propose
a lightweight approach without causing the attacker’s at-
tention. Our paper makes the following contributions.

1) We propose an approach to detect fast-flux with
DGA, called FluDD. The approach not only focuses
on the fast-flux technique but also pays attention to
domain names generated by DGA.

2) We put forward an idea of using IP fluctuation to de-
tect the fast-flux domain names. We propose a metric
called domain score to measure the IP fluctuation.

3) Our approach does not need to analysis a large
amount of DNS traffic data and the cost of compu-

International Journal of Network Security, First Online Apr. 8, 2020 (VDOI: 1816-3548-2020-00019) 2

tation is low. It does not send messages to rival’s
servers, so it’s hard to be found by attackers.

The remainder of this paper is organized as follows.
Section 2 introduces the background. Section 3 gives the
related work. Section 4 describes our approach in de-
tail. Section 5 shows experimental evaluations and re-
sults. Section 6 concludes the paper.

2 Background

2.1 Legitimate Dynamic DNS

Dynamic DNS maps a domain name to a set of IP ad-
dresses. Some applications, such as RRDNS (Round-
Robin DNS) and CDN (Content Delivery Network), uti-
lize dynamic DNS for various purposes.

RRDNS uses dynamic DNS for load balancing, load
distribution and fault tolerance [27]. RRDNS is usually
utilized in large networks where the traffic is hard to be
managed by a single server. DNS servers are used to
distribute traffic to different physical servers. Each time a
DNS request is made, one of the IP addresses is returned
in a Round Robin fashion. In this way, the traffic will
be distributed among the different IP addresses. Round
Robin DNS depends on the TTL (Time to Live) values.
The smaller the TTL is, the faster these IP addresses are
rotated.

CDN utilizes dynamic DNS to serve content to end-
users with high availability and high performance [11].
CDN is a globally distributed network consisting of a
lot of servers. When an end-user requests the content of
CDN, some algorithms are used to choose a server provid-
ing the content with high performance. When optimizing
for performance, the location may be chosen for serving
content. In CDN, small TTL value is required for chang-
ing the IP addresses.

2.2 Fast-Flux Service Network

Attackers use the fast-flux service network to orga-
nize their compromised hosts, improve their networks
availability and hide their service infrastructures. The
schematic diagram of the fast-flux service network is
shown in Figure 1. In the fast-flux service network, hun-
dreds of IP addresses are mapped to a domain name [3].
When the fast-flux domain name is inquired, different IP
addresses are returned, and the IP addresses change fre-
quently. These IP addresses act as agents to redirect the
communication between the infected hosts and the C&C
servers [19]. If one of the IP addresses is blacklisted, the
C&C server can continue to serve through other IP ad-
dresses. It’s easy to add new C&C servers by adding
new IP addresses to the set of IP addresses. This dy-
namic DNS technique makes it difficult for intrusion de-
tection systems to find the C&C servers hiding behind
proxy hosts. To change the IP addresses for a certain

Figure 1: The fast-flux service network

fast-flux domain name, the TTL (Time To Live) in the
DNS response record is usually small.

2.3 DGA (Domain Generation Algo-
rithm)

Domain Generation Algorithm (DGA) is based on seeds
to create a pseudo-random string [7]. DGA can gen-
erate a large number of domain names periodically.
These domain names can be used to contact the C&C
servers [8, 26]. Malware can generate thousands of do-
main names and contact a few of them every day, which
makes them difficult to be eliminated. To be more robust,
a malware can use lots of DGAs.

3 Related Work

As many attackers use the fast-flux domain name to pro-
tect their networks, it is important to detect fast-flux do-
main names for preserving network security. Many re-
searchers proposed a lot of fast-flux domain name detec-
tion approaches. These approaches can be divided into
two categories: Passive and active.

The passive approaches firstly collect DNS traffic in-
cluding DNS requests and responses and then analyze
DNS traffic to recognize the behavior features of the fast-
flux domain name.

Ammar [2] presented a fast-flux hunter system to de-
tect the fast-flux service network. The system used an
evolving fuzzy neural network algorithm. It collected
DNS traffic and analyzed features of the fast-flux service
network. The algorithm depends on 14 features, including
the number of DNS queries, average packet size, average
TTL, the number of TLDs, duration, and so on.

Zhou et al. [30] collected DNS traffic of a real campus
network. They used Passive DNS to detect the fast-flux
domain. Passive DNS constructs 18 domain name fea-
tures, which are categorized into diversity, time, growth
and relevance. They trained a random forest to detect
fast-flux domain name.

Leyla et al. [15] designed an EXPOSURE system to de-
tect malicious domain names. They extracted 15 features
grouped into 4 categories. The feature set includes time-
based features, DNS answer based features, TTL based
features, and domain name based features. They trained
the J48 decision tree algorithm using different combina-

International Journal of Network Security, First Online Apr. 8, 2020 (VDOI: 1816-3548-2020-00019) 3

tions of feature sets. The trained classifier is used to de-
tect malicious domain names.

The active approaches query the domain names for
their IP addresses. Domain names are obtained from var-
ious sources, such as spam, social networks. For each
domain name, the detection system queries DNS to get
the records of the domain name information. By analyz-
ing the answers, the detection system will judge whether
a domain name is benign or malicious.

Hsu et al. [10] proposed a fast-flux domain detector
(FFDD), which depends on the response time differences.
It is based on the observation that the response time of
subsequent requests to the same flux bot should be more
fluctuating. The FFDD firstly obtains the IP addresses
of a domain name, then sends requests to the same client
host and measures their response time. The domain name
with more fluctuating response time will be judged as the
fast-flux domain name.

Davor et al. [5] presented a method which measures
the network delay, document fetch delay and processing
delay of the hosts related to a domain name. The method
is based on the observation that the compromised network
could have a larger delay than normal one.

Zang et al. [27] proposed a fast-flux service network de-
tection scheme which identifies fast-flux botnet with DGA
domain names. To detect fast-flux botnet, they measured
the features of domain names, such as entropy of location,
attribution of the resolved IP, the spatial service relation-
ship. Meanwhile using a machine learning algorithm, the
scheme could detect fast-flux service with DGA domain
names.

Shi et al. [25] proposed a malicious domain name detec-
tion approach based on extreme learning machine (ELM).
They apply ELM to classify domain names based on mul-
tiple features. These features can be divided to four
categories, including construction-based, IP-based, TTL-
based, and WHOIS-based.

4 Principle and Architecture of
FluDD

This section introduces the differences between malicious
and benign domain names, and then presents the IP fluc-
tuation of the fast-flux domain name. A new metric called
domain score is designed. Besides, this section describes
the architecture of FluDD.

4.1 Differences Between Malicious and
Benign Domain Names

Attackers use malicious domain names to hide their
C&C servers. Malicious domain names use the fast-flux
technique, meanwhile, the domain names are generated
through DGA. In the fast-flux service network (FFSN), a
domain is mapped to a lot of different IP addresses. Each
IP address corresponds to a distinct bot. The attackers
recruit these bots continually. Each time a client queries

the fast-flux domain name, different IP addresses will be
returned. In this way, the real malicious servers are hard
to be detected.

However, some benign applications also use dynamic
DNS techniques, such as RRDNS and CDN. Both of the
fast-flux service networks and the benign networks use
dynamic DNS, they have similar features, such as small
TTL value. However, the difference between the fast-flux
and the benign domain name is obvious. In the fast-flux
service network, the bots are compromised hosts. The
connections between bots and C&C servers are unreli-
able. To solve this problem, attackers recruit lots of bots
and frequently change the mapping between the fast-flux
domain names and IP addresses [13]. On the other hand,
RRDNS and CDN have their own servers. These servers
are used for load balancing. The IP addresses mapping
to the benign domain name are stable.

To demonstrate the IP fluctuation of benign and
malicious domain names in practice, we select a be-
nign domain name “microsoft.com” and a malicious
domain name “2e22e99ot9oofkkkf.000webhostapp.com”
randomly from our dataset described in Section 5. We
use the “dig” command to obtain the IP addresses from
type “A” response of the domain name. Figure 2 and
Figure 3 are “dig” command results of “microsoft.com”
and “2e22e99ot9oofkkkf.000webhostapp.com”, respec-
tively. For each domain name, “dig” command is
executed twice. The second “dig” command is exe-
cuted after the TTL of the response expires. From
the results, we can see that the IP addresses of
“microsoft.com” are stable, and the IP addresses
of “2e22e99ot9oofkkkf.000webhostapp.com” change after
TTL expires.

Furthermore, some fast-flux domain names also use
DGA to generate domain names. For the fast-flux with
DGA domain names, we focus on the features of the do-
main name itself. Because the domain names are gen-
erated automatically and usually not readable, they are
different from benign ones in many ways. One of the most
obvious features is the length of the domain name. Be-
nign domain names are short to be remembered by users
easily, while DGA domain names are not. So the length of
DGA domain names usually longer than benign ones. To
reduce the computational complexity, we only compute
one feature of the domain name, the length.

4.2 IP Fluctuation and Domain Score

The above analysis shows that the IP fluctuation is the
main distinction between the fast-flux and the benign do-
main names. The IP addresses of fast-flux domain names
are more fluctuating than benign ones.

Figure 4 illustrates the IP fluctuation of benign do-
main and fast-flux domain, respectively. The horizontal
axises represent the time elapses since the domain name
is queried. In the benign network, there are more IP over-
laps in different time windows. On the contrary, in the
fast-flux service network, there is less or even no IP over-

International Journal of Network Security, First Online Apr. 8, 2020 (VDOI: 1816-3548-2020-00019) 4

Figure 2: “dig” command results of “microsoft.com”

Figure 3: “dig” command results of
“2e22e99ot9oofkkkf.000webhostapp.com”

lap in different time windows.

Figure 4: IP fluctuation of benign and fast-flux domain
name

To measure the IP fluctuation, we design a metric,
called domain score. Assume that during the total time
T , a domain name d is queried several times in each time
window. Denote Tw as the size of time window. For a
time window ti, the IP addresses set P d

i is mapped to
domain name d. Assume two adjacent time windows, ti
and tj , the IP addresses sets are P d

i and P d
j . The similar-

ity J(P d
i , P

d
j) between P d

i and P d
j is calculated using the

Jaccard coefficient [20], shown as Equation (1).

J(P d
i , P

d
j) =

|P d
i ∩ P d

j |
|P d

i ∪ P d
j |

(1)

The domain score S(d) is the average J(P d
i , P

d
j) during

T . S(d) is calculated as Equation (2).

S(d) =

∑i=L−1,j=L
i=1,j=i+1 J(P d

i , P
d
j)

L ∗ (L− 1)/2
(2)

Where L is the number of time windows during T . We
use domain score S(d) of a domain name d as a feature
to decide whether the domain name d is a benign domain
name or a fast-flux one. A domain name with a low do-
main score is more likely to be a fast-flux domain name.

Moreover, compared to fast-flux domain names, most
benign domain names are mapped to less distinct IP ad-
dresses during a period of time. Thus, in our system, if a
domain name with distinct IP addresses less than 5, we
judge it as a benign domain name.

We compute the domain score in two steps. Firstly,
we extract the DNS response records periodically. Every
Tp time, each domain name is queried for their response
records(Tp is less than or equal to Tw). The total time
of the DNS querying process is T . In this way, we could
obtain the IP addresses mapped to each domain name in
different times. It is shown in Algorithm 1. Secondly, we
assign a time window ID twID for each record and com-
pute the domain score of each domain name, according to
Equation (2). It is shown in Algorithm 2.

International Journal of Network Security, First Online Apr. 8, 2020 (VDOI: 1816-3548-2020-00019) 5

Algorithm 1 Extracting DNS response records

1: Input:

1) domainList (the list of domain names)

2) T (the total time of the DNS querying process)

3) Tp (the time interval between two consecutive
DNS queries)

2: Output:
responseList (DNS response records)

3: Begin
4: starttime = current time
5: nowtime = current time
6: while nowtime− starttime 6 T do
7: qtime = current time
8: for each d in domainList: do
9: responseList = response records of d

10: for each r in responseList: do
11: store the r(d, IP, TTL, queryT ime, . . .)
12: end for
13: end for
14: nowtime = current time
15: qduration = nowtime− qtime
16: sleep(Tp − qduration)
17: nowtime = current time
18: end while
19: End

Algorithm 2 Computing domain score

1: Input:

1) domainList (the list of domain names)

2) responseList (d, IP, TTL, queryT ime, . . .)

3) Tw (the size of time window)

2: Output: S(d) of each domain d in domainList
3: Begin
4: for each d in domainList do
5: sort the responseList of d by queryT ime
6: twID = 1
7: t1 = mininum queryT ime of all the records
8: t2 = t1 + Tw

9: for each r in responseList do
10: if queryT ime > t1 and queryT ime < t2 then
11: assign twID to r
12: else
13: update t1 and t2
14: twID = twID + 1
15: end if
16: end for
17: collect all the IP in each time window twID
18: compute J(P d

i , P
d
j) between two adjacent time win-

dow, ti and tj
19: compute domain score S(d)
20: end for
21: End

Figure 5: Architecture of FluDD

4.3 FluDD Architecture

Figure 5 gives the architecture of FluDD. Firstly, a set
of domain names, which may include malicious and be-
nign domains, are collected. Then, for each domain name,
the domain score and length are computed. In order to
compute the domain score, a DNS querying process is
conducted, as described in Algorithm 1. After that, the
IP fluctuation of each domain name is measured, and the
domain score is computed according to Equation (2), as
described in Algorithm 2. The features of the fast-flux
domain names with DGA are quite different from benign
domain names as the domain names are generated auto-
matically by algorithm and are not readable. To reduce
the cost of calculation, we only extract the length of do-
main names as a feature. Finally, the SVM (Support Vec-
tor Machine) classifier is trained. In the detection phase,
we use the trained SVM classifier to detect malicious do-
main names.

5 Experimental Design and Re-
sults

5.1 Datasets

We use two datasets. One is the benign domain names
according to Alexa top 500 sites on the web [1]. The
other is the malicious domain names collected from
sources [9, 17, 23]. After obtaining the malicious domain
name datasets, for each domain name, we compute its
number of distinct IP addresses. The first 500 malicious
domain names with the largest number of different IP ad-
dresses are selected.

5.2 Experimental Environment

The proposed approach was implemented in Python3.5.2.
The experiments were performed on a server with 4 cores
Intel (R) Xeon (R) CPU @ 2.60 GHz. The operating
system is 64 bit Ubuntu16.04. The database used is
MySQL5.5.55.

5.3 Experimental Settings

1) The parameters for extracting DNS response records.

International Journal of Network Security, First Online Apr. 8, 2020 (VDOI: 1816-3548-2020-00019) 6

The total time of the DNS querying process, T in
Algorithm 1, is 10 days. The time interval between
two DNS queries, Tp in Algorithm 1, is 1 hour.

2) The parameters for computing domain score.

Because the number of distinct IP addresses of the
benign domain name is usually small, in our exper-
iments, we filter the domain name with distinct IP
addresses less than 5. Thus lots of benign domain
names will not be analyzed and the computation is
reduced. The size of time window, Tw in Algorithm 2,
is a variable parameter. In the following experiments,
we first set Tw to 24 hours to see the distribution of
features. Then, Tw is set to 1, 6, 12, 18 and 24 hours
respectively to evaluate the performance of FluDD.

5.4 Performance Measurement

The performance of FluDD is evaluated using the fol-
lowing metric: True Positive Rate (TPR), False Positive
Rate (FPR), Precision (Pr), F-Measure (Fm) [4,18,21].
TPR, FPR, Pr, and Fm are calculated as shown in
Equations (3), (4), (5), and (6) respectively.

TPR =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)

Pr =
TP

TP + FP
(5)

Fm =
2 ∗ Pr ∗ TPR

Pr + TPR
(6)

Where TP (True Positives) is the number of malicious do-
main names recognized as malicious ones correctly, TN
(True Negatives) is the number of benign domain names
recognized as benign ones correctly, FP (False Positives)
is the number of benign domain names recognized as ma-
licious ones incorrectly and FN (False Negatives) is the
number of malicious domain names recognized as benign
ones incorrectly.

Fm is the weighted average of TPR and Pr. The
higher the values of TPR, Pr, and Fm are, the lower the
value of FPR is, the better the performance of FluDD is.

5.5 Performance Evaluation

5.5.1 Distributions of Features

In this experiment, we analyzed the distributions of
features of domain names, including domain score and
length. The size of time window Tw is configured as 24
hours in this experiment.

There are two approaches to obtain the distribution of
samples. One is the parametric approach and the other
is non-parametric approach [6]. Parametric approaches,
such as GMM (Gaussian Mixture Model), LE(Likelihood
Estimate), need the pre-defined model and parameter es-
timation [24], so we use a non-parametric approach in

our experiments. The representative method of the non-
parametric approach is the Kernel Density Estimation
(KDE). KDE use all the sample information to approxi-
mate the target probability distribution, shown as Equa-
tion (7):

f(x) =
1

nh

n∑
i=1

K(
x− xi

h
). (7)

Where n is the number of samples. h is the smoothing pa-
rameter that controls the size of the neighborhood around
x. The larger the value of h, the smoother the probabil-
ity density function curve, and vice versa [6]. K is the
kernel controlling the weight given to the observations
xi at each point x based on their proximity. The kernel
function f(x) can make the probability density function
by summing all these kernel functions and dividing them
by n [24].

Firstly, we analysis the Kernel Density Estimation
(KDE) distribution of the single-dimensional feature, do-
main score and length, respectively. In our experiments,
K is a Gaussian kernel function. To gain the probabil-
ity density curves with different smoothness, we set h to
0.02, 0.08, 0.1 and 0.2 respectively. The KDE distribu-
tions of domain score are shown in Figure 6. The x-axises
are the domain score, and the y-axises are the density of
KDE. The malicious domain scores are much smaller than
the benign ones, and the peak domain score is about 0.3.
The domains scores of benign domain names are larger,
and most of them are more than 0.4. The peak domain
score of benign ones is about 0.7. As indicated in previ-
ous, the large domain scores mean small IP fluctuation.
Compared to malicious domain names, the IP addresses
of benign domain names are more stable.

Figure 6: KDE distribution of domain score

The KDE distribution of length is given in Figure 7.
The x-axises are the length, and the y-axises are the den-
sity of KDE. From Figure 7, we can see that the lengths of
benign domain names are less than 20, and most of them
are less than 10. However, the lengths of most malicious
domain names are much larger than benign ones.

International Journal of Network Security, First Online Apr. 8, 2020 (VDOI: 1816-3548-2020-00019) 7

Figure 7: KDE distribution of length

Secondly, we analyze the distribution of both the two
features in two-dimensional, as shown in Figure 8. As it
can be seen, most of the benign and malicious domain
names can be separated by the SVM classifier.

Figure 8: The distribution of two-dimensional features

5.5.2 Performance of FluDD

To achieve the best performance, we try different values of
Tw. N-fold cross-validation is used to estimate the perfor-
mance of the SVM classifier. In N-fold cross-validation,
the dataset is partitioned randomly into N samples. The
evaluations are run by N times. In each time, N −1 sam-
ples are selected for training and the remaining samples
are used to evaluate the accuracy of the classifier. Finally,
the mean value of all the results is calculated. In this ex-
periment, N is 10 and Tw is set to 1, 6, 12, 18 and 24
hours respectively.

We analysis the Pr, Fm, and TPR in different time
windows size Tw. As shown in Figure 9, all the Pr and
Fm are more than 98%. When the time window size Tw

is 6 and 12 hours, the Pr, Fm, and TPR achieve the
maximum value, in which Pr is 100%, Fm is 99.8% and
TPR is 99.6%.

Figure 9: Pr, Fm, and TPR in different time windows
sizes

FPR in different time windows size Tw are also ana-
lyzed. As shown in Figure 10, when the time window size
Tw is 6 or 12 hours, the FPR is zero. From Figure 9 and
Figure 10, we can see that when the time window size Tw

is 6 and 12 hours, FluDD achieves the best performance.

Figure 10: FPR in different time windows size

5.5.3 Discussion and Comparison

Passive fast-flux domain detection approaches need to
parse and process the DNS traffic, and this brings heavy
computations. While some active approaches send mes-
sages or requests to malicious servers and will attract the
attention of attackers. Instead, we concern about the sta-
bility of IP addresses mapping to a domain name. IP
addresses of fast-flux domain names are unstable than
benign ones. Our approach utilized this phenomenon.

It is difficult for attackers to bypass the detection of
FluDD. A way for attackers to escape the detection of
FluDD is to make the domain score large. To do so, a

International Journal of Network Security, First Online Apr. 8, 2020 (VDOI: 1816-3548-2020-00019) 8

Table 1: Comparisons of different fast-flux domain detection approaches

Targets Hsu et al. [10] Zeng et al. [27] Shi et al. [30] FluDD
No message sending to malicious servers No Yes Yes Yes
Can detect domain name generated by DGA No Yes Yes Yes
No need of domain names generated by the
same DGA

Yes No Yes Yes

Fewer features to analysis Yes No No Yes

lot of stable hosts, which are Internet-connected, without
anti-virus software installed and always powered on, are
required. Furthermore, attackers could not recruit new
hosts to scale up the fast-flux service network during the
running time of the detection system. However, all the
hosts used in the fast-flux service networks are controlled
by dedicated persons, not attackers. It’s hard for attack-
ers to ensure most of the hosts are available. To make
the fast-flux service network robust, attackers must con-
stantly recruit new hosts to join the network. Thus, it is
difficult for the attackers to make the domain score large
on purpose.

Three typical related approaches for detecting fast-
flux domain names are chosen to make comparisons with
FluDD. As shown in Table 1, our approach is different
from others and has some excellent features.

6 Conclusion

In this paper, FluDD, a system for detecting the fast-
flux domain name with DGA, is proposed. We utilize
the phenomenon that the IP addresses mapping to the
fast-flux domain name are unstable. A new metric called
domain score is designed to measure the IP fluctuation.
Meanwhile, to counter the DGA domain name, the length
of the domain name is considered. It is convinced that
FluDD can be used to detect the fast-flux domain name
with DGA. Experiments show that the true positive rate,
F-measure and precision of our approach are high, and the
false positive rate is low. Our approach is lightweight and
requires fewer computations. Furthermore, since no infor-
mation is sent to the malicious servers, it is impossible for
the attacker to notice the detection. Finally, we analyze
the advantages of FluDD, the possible evasion methods
of attackers and make comparisons of different detection
approaches. In the future, we continue to discover the fea-
tures of the fast-flux domain name and combat attackers’
evasion strategies.

7 Acknowledgments

This study was supported by the School Funds of Bei-
jing Information Science and Technology University (No.
1925023).

References

[1] Alexa Internet, The Top 500 Sites on the Web, 2019.
(https://www.alexa.com/topsites)

[2] A. Ammar, “Fast-flux hunter: A system for filter-
ing online fast-flux botnet,” Neural Computing and
Applications, vol. 29, no. 7, pp. 483–493, 2018.

[3] B. Andreas, D. Alessandro, G. Wilfried, and P. Anto-
nio, “Mining agile dns traffic using graph analysis for
cybercrime detection,” Computer Networks, vol. 100,
pp. 28–44, 2016.

[4] C. Daiki, Y. Takeshi, A. Mitsuaki, S. Toshiki, M. Tat-
suya, and G. Shigeki, “Domainprofiler: Toward ac-
curate and early discovery of domain names abused
in future,” International Journal of Information Se-
curity, vol. 17, no. 6, pp. 661–680, 2018.

[5] C. Davor, S. Vlado, and D. Ivica, “Fast-flux botnet
detection based on traffic response and search engines
credit worthiness,” Tehnički vjesnik, vol. 25, no. 2,
pp. 390–400, 2018.

[6] Q. L. Deng, T. Y. Qiu, F. R. Shen, and J. X.
Zhao, “Adaptive online kernel density estimation
method (in Chinese),” Journal of Software, 2019.
(doi: 10.13328/j.cnki.jos.005674)

[7] T. Duc, M. Hieu, T. Van, T. H. Anh, and N. L. Gi-
ang, “A LSTM based framework for handling multi-
class imbalance in dga botnet detection,” Neurocom-
puting, vol. 275, pp. 2401–2413, 2018.

[8] Y. Fu, L. Yu, O. Hambolu, I. Ozcelik, B. Husain,
J. X. Sun, K. Sapra, and D. Du, “Stealthy domain
generation algorithms,” IEEE Transactions on In-
formation Forensics and Security, vol. 12, no. 6,
pp. 1430–1443, 2017.

[9] hpHosts, 2019. (http://hosts-file.net)

[10] F. Hsu, C. Wang, C. Hsu, C. Tso, L. Chen, and
S. Lin, “Detect fast-flux domains through response
time differences,” IEEE Journal on Selected Areas in
Communications, vol. 32, pp. 1947–1956, Oct. 2014.

[11] L. Jeffrey, F. Qiang, and M. Tim, “Using SDN and
NFV to enhance request rerouting in ISP-CDN col-
laborations,” Computer Networks, vol. 113, pp. 176–
187, 2017.

[12] A. Kamal, A. Ammar, and M. Ahmad, “A survey of
botnet detection based on dns,” Neural Computing
& Applications, vol. 28, no. 7, pp. 1541–1558, 2017.

International Journal of Network Security, First Online Apr. 8, 2020 (VDOI: 1816-3548-2020-00019) 9

[13] M. Knysz, X. Hu, and K. G. Shin, “Good guys
vs. bot guise: Mimicry attacks against fast-flux de-
tection systems,” in Proceedings IEEE INFOCOM,
pp. 1844–1852, Apr. 2011.

[14] J. Kwon, J. Lee, H. Lee, and A. Perrig, “Psybog:
A scalable botnet detection method for large-scale
dns traffic,” Computer Networks, vol. 97, pp. 48–73,
2016.

[15] B. Leyla, S. Sevil, B. Davide, K. Engin, and
K. Christopher, “Exposure: A passive DNS analy-
sis service to detect and report malicious domains,”
ACM Transactions on Information and System Se-
curity (TISSEC’14), vol. 16, no. 4, p. 14, 2014.

[16] Z. Y. Liu, Y. F. Zeng, P. F. Zhang, J. F. Xue,
J. Zhang, and J. T. Liu, “An imbalanced malicious
domains detection method based on passive dns traf-
fic analysis,” Security and Communication Networks,
vol. 2018, pp. 1–8, 2018.

[17] Malc0de database, 2019. (http://malc0de.com/
rss/)

[18] S. Matija, P. J. Myrup, D. Alessandro, and R. Ste-
fan, “A method for identifying compromised clients
based on DNS traffic analysis,” International Journal
of Information Security, vol. 16, no. 2, pp. 115–132,
2017.

[19] M. Muhammad, N. Manjinder, and M. Ashraf, “A
survey on botnet architectures, detection and de-
fences.,” International Journal of Network Security,
vol. 17, no. 3, pp. 264–281, 2015.

[20] N. Natrajan and P. Suresh, “A comparative scru-
tinization on diversified needle bandanna segmenta-
tion methodologies,” International Journal of Elec-
tronics and Information Engineering, vol. 10, no. 2,
pp. 65–75, 2019.

[21] W. N. Niu, X. S. Zhang, G. W. Yang, J. N. Zhu, and
Z. W. Ren, “Identifying APT malware domain based
on mobile DNS logging,” Mathematical Problems in
Engineering, vol. 2017, pp. 9, 2017.

[22] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk,
and K. Bobrovnikova, “Anti-evasion technique for
the botnets detection based on the passive DNS
monitoring and active DNS probing,” in The 23rd
International Conference on Computer Networks
(CN’16), pp. 83–95, June 2016.

[23] Risk Analytics, Malware Domain Blocklist by
Riskanalytics, 2019. (http://www.malwaredomains.
com) 2019.

[24] S. Sanghyun and K. Juntae, “Efficient weights quan-
tization of convolutional neural networks using ker-

nel density estimation based non-uniform quantizer,”
Applied Sciences, vol. 9, no. 12, pp. 2559, 2019.

[25] Y. Shi, G. Chen, and J. Li, “Malicious domain name
detection based on extreme machine learning,” Neu-
ral Processing Letters, vol. 48, no. 3, pp. 1347–1357,
2018.

[26] T. S. Wang, H. T. Lin, W. T. Cheng, and C. Y.
Chen, “DBod: Clustering and detecting DGA-based
botnets using DNS traffic analysis,” Computers &
Security, vol. 64, pp. 1–15, 2017.

[27] X. Zang, J. Gong, S. Mo, A. Jakalan, and D. Ding,
“Identifying fast-flux botnet with AGD names at
the upper DNS hierarchy,” IEEE Access, vol. 6,
pp. 69713–69727, 2018.

[28] X. D. Zang, G. Jian, and X. Y. Hu, “Detecting ma-
licious domain names based on AGD,” Journal on
Communications, vol. 39, no. 7, pp. 15–25, 2018.

[29] Y. Zhauniarovich, I. KHALIL, T. Yu, and M. Dacier,
“A survey on malicious domains detection through
dns data analysis,” ACM Computing Surveys, vol. 1,
no. 1, pp. 1–35, 2018.

[30] C. L. Zhou, K. Chen, X. X. Gong, P. Chen, and
H. Ma, “Detection of fast-flux domains based on pas-
sive DNS analysis (in chinese),” Acta Scientiarum
Naturalium Universitatis Pekinensis, vol. 52, no. 3,
pp. 396–402, 2016.

Biography

Hong-Ling Jiang received her Ph.D in the Computer
Science College of Nankai University, Tianjin, China,
in 2013. She is currently a lecturer in the School of
Information Management at Beijing Information Science
and Technology University, China. Her research interest
focuses on Network Security, Artificial Intelligence, and
the Internet of Things. She has published more than ten
papers in recent years.

Jin-Zhi Lin received the Ph.D. degree in computer
application from Nankai University, Tianjin, China, in
2015. Currently, he works as an assistant professor in
Shenzhen Institute of Advanced Technology (SIAT),
Chinese Academy of Sciences (CAS), Shenzhen, China.
His research interests include cyber physical system,
embedded system, internet of things and wireless com-
munication. He has also published several peer-reviewed
journal and conference papers in recent years.

