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Abstract

Elliptic Curve Cryptography (ECC) has become one of
the research hotspots in cryptography in recent years.
Scalar multiplication is the most crucial operation in
ECC, and it largely determines the efficiency of ECC.
To improve ECC’s speed, we propose a new secure and
efficient scalar multiplication algorithm on elliptic curves
over GF(2m). In addition, we present the new compos-
ite operation formulas 3P1 and 2P1 + P2 using only x-
coordinate, where P1 and P2 are points on an elliptic
curve. To ensure the safety and efficiency of the pro-
posed algorithm, we constitute an atomic block by adding
dummy operations and using the Montgomery trick.

Keywords: Elliptic Curve Cryptography; Scalar Multipli-
cation; Side Channel Atomic Block; Simple Power Anal-
ysis

1 Introduction

As the hacking techniques become more and more pow-
erful, safe and efficient encryption technology is needed.
Since Miller [17] and Koblitz [9] independently proposed
Elliptic Curve Cryptography (ECC) in 1985, it has be-
come one of the research hotspots in the field of cryptog-
raphy due to its short key and high security. ECC can
provide the same functions as the RSA cryptosystem and
it requires a shorter key length than RSA under the same
security. It is generally used for digital signature, authen-
tication, encryption, decryption [8, 19, 25]. Because of its
advantages in security, encryption and decryption perfor-
mance, and space consumption, ECC has a wide range
of applications, such as transport layer security (TLS),
cryptocurrency, SM2 public key cryptography and gov-
ernment agencies, etc. Besides, it is especially suitable
for environments with limited storage resources, such as
smart cards and secure storage chips.

In ECC, it is easy to obtain the point Q when Q = kP ,
and the number k and point P are given. But it is diffi-
cult to find k when point P and point Q are given. This
is the classical discrete logarithm problem (DLP). ECC
uses this feature to encrypt where point Q is the pub-
lic key, big number k is the private key and point P is
the base point on an elliptic curve. The most crucial op-
eration in ECC is scalar multiplication kP that largely
determines the speed of ECC. There are two main meth-
ods to improve the efficiency of scalar multiplication. The
first method is to reduce computation by optimizing the
bottom arithmetic formulas, such as reducing the number
of field inversion operations by transforming coordinates.
The second method is to decrease the number of point ad-
dition and doubling in the scalar multiplication algorithm
by studying the expanded form of k, such as double-base
chain [27] and symmetric ternary form (STF) [13].

Side channel analysis (SCA) is a method to attack the
cryptographic devices by analyzing the leaked side chan-
nel information such as time consumption, power con-
sumption or electromagnetic radiation during the oper-
ation of cryptographic devices [24]. Power analysis is a
form of SCA. It is an attack by collecting power consump-
tion information generated by cryptographic devices or
cryptographic chips during encryption, decryption or sig-
nature operations, and analyzing the key by using statis-
tics, cryptography and other relevant knowledge. Power
analysis can be divided into simple power analysis (SPA)
and differential power analysis (DPA). SPA has a direct
threat to cryptographic devices. It can directly analyze
the power information collected during the execution of
cryptographic algorithm. When the device performs en-
cryption or decryption, the key can be derived from the
difference in power consumption trajectories. The key in
this paper refers to the private key k.

In 1987, the Montgomery algorithm was proposed by
Montgomery [18]. The basic idea is that each loop has a
point addition and doubling so that the energy consumed
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by each loop is basically the same. In 1999, Lopez and
Dahab [16] optimized the Montgomery ladder algorithm
on elliptic curves over GF(2m). The new point addition
and doubling formulas eliminated the calculation of y-
coordinate, which improved the calculation speed of the
algorithm. In 2008, the new point addition and doubling
formulas proposed by Yu et al. [?] not only omitted the
y-coordinate but also dislodged the field inversion oper-
ation. In 2013, Sung et al. [5] posed the new compos-
ite formulas 4P1, 3P1 + P2 and 2P1 + 2P2 with only x-
coordinate, and presented the extended quaternary Mont-
gomery ladder algorithm over GF(2m). In 2016, Lai and
Zhang [10] proposed Co Z point addition algorithm, con-
jugate point addition algorithm and point doubling-point
addition algorithm with omitting Z-coordinate on Hes-
sian elliptic curves and applied them to the traditional
Montgomery ladder algorithm. In 2017, Yu et al. [26] op-
timized the Montgomery algorithm using the Co Z tech-
nique in projective coordinates over GF(3m). In 2019,
Liu et al. [14] proposed the ternary Montgomery ladder al-
gorithm, which combines the original Montgomery ladder
algorithm with the ternary representation of the scalar k.

To obtain a safe and efficient scalar multiplication algo-
rithm, we first propose the new composite operation for-
mulas 3P1 and 2P1 +P2 using only x-coordinate in affine
coordinate system to reduce the bottom field operations
and we apply them to the ternary Montgomery ladder al-
gorithm. Then we constitute an atomic block by adding
dummy operations to the proposed composite operation
formulas to prevent SPA. Last, we use Montgomery trick
in the atomic block to optimize the computational cost,
which can decrease the number of field inversion opera-
tions.

The rest of this paper is presented as follows. In section
II, we briefly introduce Elliptic Curve Cryptography and
the Montgomery ladder algorithm. In section III, we give
a detailed presentation on new composite operation for-
mulas and the anti-SPA scalar multiplication algorithm
based on side channel atomic block. In section IV, we
compare the performance of the proposed algorithm with
existing algorithms.

2 Elliptic Curve Cryptography
and Montgomery Ladder Algo-
rithm

2.1 Elliptic Curve Cryptography

Definition 1. The equation of a non-super singular el-
liptic curve E over GF(2m) is given as follows:

E/GF (2m) : y2 + xy = x3 + ax2 + b. (1)

with a, b ∈ GF (2m), b 6= 0. All points on E and the
infinity point O form an abelian group. Assume P1 =
(x1, y1) ∈ E(GF (2m)), P2 = (x2, y2) ∈ E(GF (2m)),
−P1 = (x1, x1 + y1) and P2 6= −P1.

If P1 6= P2, P3 = P1+P2 = (x3, y3), then point addition
operation:

x3 = (
y1 + y2
x1 + x2

)
2

+
y1 + y2
x1 + x2

+ x1 + x2 + a

y3 =
y1 + y2
x1 + x2

(x1 + x3) + x3 + y1

(2)

If P1 = P2, P3 = 2P1 = (x3, y3), then point doubling
operation:

x3 = (x1 +
y1
x1

)
2

+
y1
x1

+ x2 + a

y3 = (x1 +
y1
x1

)(x1 + x3) + x3 + y1
(3)

It can be seen that the computational costs of point ad-
dition and doubling are both 1I + 2M + 1S, where I, M ,
S are the representations of field inversion, field multipli-
cation and field squaring, respectively.

2.2 Montgomery Ladder Algorithm

The Montgomery algorithm was initially proposed to im-
prove the speed of scalar multiplication. The left-to-right
Montgomery ladder algorithm [20] is described by Algo-
rithm 1, which is a classical way to compute the scalar
multiplication.

Algorithm 1 Left-To-Right Montgomery Ladder Algo-
rithm
1: Input: P = (x, y) ∈ E(GF (2m)), and k =

(kn−1kn−2 · · · k1k0)2
2: Output: Q = kP ∈ E(GF (2m))
3: R0 = P,R1 = 2P
4: for i ≤ n− 2, · · · , 0 do
5: if ki = 1 then
6: R0 = R0 +R1, R1 = 2R1

7: else if ki = 0 then
8: R1 = R0 +R1, R0 = 2R0

9: end if
10: end for
11: Return Q = R0

12: End

Based on the original Montgomery ladder algorithm,
Liu et al. [14] proposed the ternary Montgomery ladder
algorithm, which is described by Algorithm 2.

3 New Algorithm Based on the
Ternary Montgomery Ladder
Algorithm

3.1 Composite Operation Formulas

Improving the performance of the Montgomery ladder
algorithm by using only x-coordinate method was first
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Algorithm 2 The Ternary Montgomery Ladder Algo-
rithm
1: Input: P = (x, y) ∈ E(GF (2m)), and k =

(kn−1kn−2 · · · k1k0)3, where kn−1 = 1 or 2
2: Output: Q = kP ∈ E(GF (2m))
3: R0 = kn−1P,R1 = (kn−1 + 1)P
4: for i ≤ n− 2, · · · , 0 do
5: if ki = 0 then
6: R2 = 3R0, R1 = 2R0 +R1

7: else if ki = 1 then
8: R2 = 2R0 +R1, R1 = 2R1 +R0

9: else if ki = 2 then
10: R2 = 2R1 +R0, R1 = 3R1

11: end if
12: R0 = R2

13: end for
14: Return Q = R0

15: End

introduced by Lopez & Dahab [16]. Then several x-
coordinate-only methods were presented [5, 22, 28]. As-
sume Pi is a point on an elliptic curve E. Let P1 =
(x1, y1), P2 = (x2, y2), −P1 = (x1, x1 + y1), P2 − P1 =
P = (x, y), and P2 6= −P1, then we can obtain

x3 =

x+ x1

x1+x2
+
(

x1

x1+x2

)2
P1 6= P2

x21 + b
x2
1

P1 = P2

(4)

The formula for restoring the y coordinate at the last
step is

y1 = (x1 + x){(x1 + x)(x2 + x) + x2 + y}/(x+ y) (5)

It can be seen from Equation (4) that the costs of both
two operations are 1I + 1M + 1S. Based on the idea
of Lopez & Dahab, this paper proposes two composite
operation formulas 3P1 and 2P1 + P2.

Theorem 1. Let P1 = (x1, y1) be a point on an elliptic
curve E over GF(2m). Then, x3P1 can be gained:

x3P1
= x1 +

x1
3

x14 + x13 + b
+

(
x1

3

x14 + x13 + b

)2

(6)

with cost 1I+1M+3S+1C, where C is the representation
of field cubing.

Proof. Let 3P1 be computed as 2P1 + P1. Equation (4)
gives

x3P1
= x1 +

xP1

xP1
+ x2P1

+

(
xP1

xP1
+ x2P1

)2

(7)

Then, we obtain Equation (6).

Theorem 2. Let P1 = (x1, y1), P2 = (x2, y2) be points
on an elliptic curve E over GF(2m). Then, x2P1+P2

can

be gained:

x2P1+P2
= x2 +

x1(x1 + x2)
2

(x+ x1)(x1 + x2)
2

+ x1x2

+

(
x1(x1 + x2)

2

(x+ x1)(x1 + x2)
2

+ x1x2

)2 (8)

with cost 1I + 2S + 4M .

Proof. Let 2P1 + P2 be computed as (P1 + P2) + P1 and
P2 − P1 = P (x, y) which is an input. Equation (4) gives

x2P1+P2
= x2 +

xP1

xP1
+ xP1+P2

+

(
xP1

xP1
+ xP1+P2

)2

(9)

Then, we obtain Equation (8).

The probability that ki is equal to 0, 1, and 2 is
1/3 [11]. When Algorithm 2 is computed by Equa-
tion (6) and Equation (8), the average calculation costs
are 2I + 6M + 14/3S + 2/3C per loop.

3.2 New Algorithm Based on Side Chan-
nel Atomic Block

In view of SCA attack, in 2004, Mames, ciet and joye pro-
posed a method that almost does not increase the amount
of computation: Side channel atomic block method [4].
Its main idea is to decompose the operations on ellip-
tic curves into a series of indistinguishable atomic blocks
with multiple side channels. The general method is to
add dummy operations so that there is no difference in
the side channel analysis of different execution processes.

In this paper, as can be seen from Algorithm 2 that the
discrimination of each loop is 3P1 and 2P1 +P2. To make
it anti-SPA, we can add some dummy operations to 3P1

and 2P1 + P2 to make the costs of 3P1 and 2P1 + P2 in-
distinguishable so that the amount of calculations in each
loop is exactly the same. In this way, the scalar multipli-
cation can be represented as a series of indistinguishable
atomic blocks of code, so the attacker cannot obtain the
side channel information by SPA attack.

The Montgomery trick is an efficient way to improve
performance by computing field inversions simultane-
ously. For instance, a−1 and b−1 can be computed as
a−1 = (ab)−1 · b, b−1 = (ab)−1 · a. It converts two
field inversion operations into one field inversion opera-
tion and three field multiplication operations, which can
save 1I − 3M calculation costs per loop. Therefore, we
apply the Montgomery trick to Equation (6) and Equa-
tion (8) in the atomic block to reduce the amount of field
inversion operations to optimize the algorithm.

As stated above, we constitute the atomic block by
adding dummy operations in each loop to make it anti-
SPA and using Montgomery trick to reduce the amount of
field inversion operations. Table 1, called the atomic block
elliptic curve triple and double-and-add, i.e. AETD, de-
scribes the atomic block in detail.
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In the upper section, Algorithm 2 can be computed effi-
ciently by using the proposed composite operation formu-
las Equation (6) and Equation (8), with cost 2I+14/3S+
6M + 2/3C per loop. However, the computation costs of
AETD just require 1I + 4S + 10M . Applying AETD
to Algorithm 2, Algorithm 3 is obtained. Algorithm 3
saves I + 2/3S − 4M + 2/3C compared with Algorithm 2
computed by Equation (6) and Equation (8), and saves
3I − 2M compared with Algorithm 2 computed by Equa-
tion (2) and Equation (3) in each loop. From Algorithm 3,
we can conclude that only one atomic block is used in each
loop, so each loop requires the same amount of calcula-
tions regardless of the value of ki.

Algorithm 3 Anti-SPA Scalar Multiplication Algorithm
Based On Side Channel Atomic Block
1: Input: P = (x, y) ∈ E(GF (2m)), and k =

(kn−1kn−2 · · · k1k0)3, where kn−1 = 1 or 2
2: Output: Q = kP ∈ E(GF (2m))
3: R0 = kn−1P,R1 = (kn−1 + 1)P
4: for i ≤ n− 2, · · · , 0 do
5: (R0, R1) = AETD[ki](R0, R1)
6: end for
7: Return Q = R0

8: End

4 Performance Analysis

4.1 Security Analysis

In ECC, if a scalar multiplication algorithm has different
power consumption according to ki, it is vulnerable to
SPA. In other words, if the algorithm has the same power
consumption regardless of the value of ki, it is resistant
to SPA. Therefore, all countermeasures against SPA have
to modify the algorithm to obtain a uniform power con-
sumption trace. In general, there are three main ways to
anti-SPA. The first way is uniform algorithm behavior,
such as Montgomery ladder algorithm. The second way
is uniform point addition and doubling formulas, such as
Edwards curve [2]. The third way is to add dummy field
operations [6].

To improve the efficiency of the ternary Montgomery
ladder algorithm, the composite operation formulas 3P1

and 2P1 + P2 are proposed. However, the power con-
sumption of 3P1 and 2P1 + P2 is different. Algorithm 2
computes 3P1 and 2P1 + P2 when ki is equal to 0 or 2,
while it computes 2P1 + P2 twice when ki is equal to 1.
SPA gains the key according to the peak shape of the
energy graph [12], so it is easy to obtain the value of ki
by observing the power consumption curve leaked dur-
ing execution of the algorithm. Therefore, we adopt the
third way to add dummy field operations to constitute
an atomic block. It can be seen from Table 1 and Al-
gorithm 3 that the field operation of each step of every
atomic block is the same and only one atomic block is
used in each loop, so the power consumed by each loop

is the same whatever ki = 0, 1, or 2, which is secure to
resist SPA. In addition, Algorithm 3 can also resist DPA
so long as randomize the scalar k.

4.2 Efficiency Analysis

Because the extra calculations of algorithms are negligi-
ble, in this paper, we mainly compare the calculations
of main iteration of algorithms. In this section, the effi-
ciency of the proposed composite operation formulas and
Algorithm 3 is analyzed.

Table 2 shows the computation costs of Algorithm 2
under different calculation formulas. From it, we can
draw the conclusion that Algorithm 2 can be computed
efficiently by using Equation (6) and Equation (8) pro-
posed in this paper. It requires 2I + 14/3S + 6M + 2/3C
on average, with saving 2I − 2M − 2/3S − 2/3C than
Equation (4) and saving 2I + 2M − 2/3S − 2/3C than
Equation (2) and Equation (3) in each loop.

Given an integer k, assume that m = dlog3ke is the
length of the ternary representation and n = dlog2ke is
the length of the binary representation, m = nlog32, i.e.
160-binary is equivalent to 101-ternary and 192, 256, 600-
binary [21] is equivalent to 122, 162, 379-ternary, respec-
tively. We suppose n = 160 bits, m = 101 bits. According
to the experiment of Bernstein [3], we assume I/M = 8,
S/M = 0.8.

Table 3 shows the comparison of Algorithm 3 and ex-
isting algorithms over GF(2m). It can be seen that Al-
gorithm 3 has a good improved efficiency compared with
the algorithms of [12, 23] and [15]. In comparison, the
improved efficiency of Algorithm 3 is 13.6%, 33.9%, 8.7%,
13.4%, 1.6%, and 15.4%, respectively.

In order to analyze the dynamic changes of the im-
proved efficiency of Algorithm 3 than existing algorithms,
we suppose

I/M = β (10)

S/M = 0.8. The improved efficiency of Algorithm 3, i.e.
ε can be given as follows:

ε=1− (m− 1)(#I1 + #M1)

`(#I2 + #M2)
(11)

(#I1 + #M1) represents the amount of calculations
of Algorithm 3 per loop, and (#I2 + #M2) represents
the amount of calculations of existing algorithms in each
loop. (m − 1) and ` indicate the number of iterations of
Algorithm 3 and existing algorithms.

Field inversion operations can be efficiently com-
puted by the Extended Euclidean Algorithm (EEA) over
GF(2m), which uses gcd(a, b) = gcd(b+ca, a) for all binary
polynomials. According to [1], when the field size is 163
bits, performance of a field inversion operation using the
EEA is equal to about 6.67-10.33 field multiplication oper-
ations in binary field, which means β is about 6.67-10.33.

Figure 1 shows the comparison of Algorithm 3 and ex-
isting algorithms. I/M is the x-axis and the improved
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Table 1: The atomic block elliptic curve triple and double-and-add (AETD)

Input:T1 = P1 = x1, T2 = P2 = x2, T3 = P = x
Output:(3P1, 2P1 + P2) or (2P1 + P2, 2P2 + P1) or (2P2 + P1, 3P2)
ki = 0
(T1, T2) = (3P1, 2P1 + P2)
T4 ← T1 + T2(x1 + x2)
T5 ← T1

2(x1
2)

T6 ← T3 + T2(dummy)
T6 ← T5 · T5(x1

4)
T7 ← T1 · T5(x1

3)
T5 ← b
T8 ← T1 · T2(x1x2)
T5 ← T5 + T7(b+ x1

3)
T5 ← T6 + T5(A)
T6 ← T3 + T1(x+ x1)
T4 ← T4

2((x1 + x2)2)
T9 ← T1 · T4(x1(x1 + x2)2)
T4 ← T6 · T4((x+ x1)(x1 + x2)2)
T6 ← T6 + T9(dummy)
T4 ← T4 + T8(B)
T6 ← T5 · T4(AB)
T6 ← T6

−1((AB)−1)
T5 ← T6 · T5(B−1)
T4 ← T6 · T4(A−1)
T4 ← T4 · T7(A−1x1

3)
T6 ← T4

2

T4 ← T4 + T6
T4 ← T1 + T4(3P1)
T5 ← T5 · T9(B−1x1(x1 + x2)2)
T9 ← T5

2

T5 ← T5 + T9
T2 ← T2 + T5(2P1 + P2)
T1 ← T4(3P1)
(A = x1

4 + x1
3 + b;

B = (x+ x1)(x1 + x2)2 + x1x2)

ki = 1
(T1, T2)=(2P1 + P2, 2P2 + P1)
T4 ← T1 + T2(x1 + x2)
T5 ← T4

2((x1 + x2)2)
T6 ← T3 + T2(x+ x2)
T6 ← T6 · T5((x+ x2)(x1 + x2)2)
T7 ← T2 · T5(x2(x1 + x2)2)
T4 ← b
T8 ← T1 · T2(x1x2)
T4 ← T5 + T7(dummy)
T4 ← T6 + T8(A)
T6 ← T3 + T1(x+ x1)
T3 ← T3

2(dummy)
T9 ← T1 · T5(x1(x1 + x2)2)
T5 ← T6 · T5((x+ x1)(x1 + x2)2)
T6 ← T6 + T9(dummy)
T5 ← T5 + T8(B)
T6 ← T4 · T5(AB)
T6 ← T6

−1((AB)−1)
T4 ← T6 · T4(B−1)
T5 ← T6 · T5(A−1)
T5 ← T5 · T7(A−1x2(x1 + x2)2)
T6 ← T5

2

T5 ← T5 + T6
T5 ← T1 + T5(2P2 + P1)
T4 ← T4 · T9(B−1x1(x1 + x2)2)
T9 ← T4

2

T4 ← T4 + T9
T1 ← T2 + T4(2P1 + P2)
T2 ← T5(2P2 + P1)
(A = (x+ x2)(x1 + x2)2 + x1x2;
B = (x+ x1)(x1 + x2)2 + x1x2)

ki = 2
(T1, T2) = (2P2 + P1, 3P2)
T4 ← T1 + T2(x1 + x2)
T5 ← T4

2((x1 + x2)2)
T6 ← T3 + T2(x+ x2)
T6 ← T6 · T5((x+ x2)(x1 + x2)2)
T7 ← T2 · T5(x2(x1 + x2)2)
T5 ← b
T8 ← T1 · T2(x1x2)
T4 ← T5 + T7(dummy)
T4 ← T6 + T8(A)
T6 ← T3 + T1(dummy)
T6 ← T2

2(x2
2)

T9 ← T2 · T6(x2
3)

T6 ← T6 · T6(x2
4)

T6 ← T6 + T9
T5 ← T6 + T5(B)
T6 ← T5 · T4(AB)
T6 ← T6

−1((AB)−1)
T5 ← T6 · T5(A−1)
T4 ← T6 · T4(B−1)
T4 ← T4 · T7(B−1x2(x1 + x2)2)
T6 ← T4

2

T4 ← T4 + T6
T4 ← T1 + T4(2P2 + P1)
T5 ← T5 · T9(A−1x2

3)
T9 ← T5

2

T5 ← T5 + T9
T2 ← T2 + T5(3P2)
T1 ← T4(2P2 + P1)
(A = (x+ x2)(x1 + x2)2 + x1x2;
B = x2

4 + x2
3 + b)

Table 2: The computation costs of Algorithm 2 under different calculation formulas

Formulas 3P1 2P1 + P2 Average costs of main iteration Anti-SPA
(2)(3) 2I + 4M + 2S 2I + 4M + 2S 4I + 8M + 4S yes

(4) 2I + 2M + 2S 2I + 2M + 2S 4I + 4M + 4S yes
(6)(8) 1I + 1M + 3S + 1C 1I + 4M + 2S 2I + 6M + 14/3S + 2/3C no

Table 3: The computation costs of different scalar multiplication algorithms

Algorithm Total costs of main iteration n = 160bits,m = 101bits Anti-SPA
Unprotected NAF [23] (10M + 20/3S)n 2453.3M No

Co Z protected NAF [23] (85/6M + 265/36S)n 3208.9M Yes
Mont2 [12] 3(1I + 1M + 1S)(n/2− 1) 2322.6M No
Mont3 [12] 37/24(1I + 1M + 1S)(n+ 2) 2447.6M No

Co Z STF [15] (52/3M + 5S)m 2154.7M No
Co Z Anti-SPA STF [15] (20M + 6S)m 2504.8M Yes

Algorithm 3 (1I + 10M + 4S)(m− 1) 2120M Yes
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Figure 1: The comparison of Algorithm 3 and existing
algorithms

efficiency of Algorithm 3 than existing algorithms is the
y-axis. When I/M = 8, Table 3 can be obtained. It can
be seen from Figure 1, for algorithms of [23] and [15], the
improved efficiency of Algorithm 3, i.e. ε, decreases lin-
early as β increases. For algorithms of [12], ε increases as
β increases and the larger β, the slower ε increases. When
β is 6.67-10.33, Algorithm 3 is more efficient than other
algorithms except for Co Z STF algorithm [15]. How-
ever, Algorithm 3 performs better than Co Z STF algo-
rithm [15] when β is less than 8.3. In summary, Algorithm
3 has a good improvement in efficiency compared with ex-
isting algorithms.

5 Conclusions

In this paper, we proposed an anti-SPA scalar multipli-
cation algorithm based on side channel atomic block over
GF(2m). Besides, we have optimized the bottom field
operations by presenting new composite operation formu-
las 3P1 and 2P1 + P2. Figure 1 intuitively shows the
comparison of the proposed algorithm and existing algo-
rithms. When I/M = 8, it can be seen from Table 3
that the proposed algorithm is more efficient than exist-
ing algorithms, ranging from 1.6% to 33.9%. Then we
can apply it to the specific environments, such as wire-
less sensor networks with resource-limited. Next, we will
try to transform the coordinate to optimize the proposed
composite operation formulas and then propose a more
efficient scalar multiplication algorithm.
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