
International Journal of Network Security(VDOI: 1816-3548-2021-00005) 1

Detect Cross-Site Scripting Attacks Using
Average Word Embedding and Support Vector

Machine

Fawaz Mahiuob Mohammed Mokbal1,2, Dan Wang1, and Xiaoxi Wang3

(Corresponding author: Dan Wang)

College of Computer Science, Faculty of Information Technology, Beijing University of Technology1

Beijing, Beijing 100124, China

Email: wangdan@bjut.edu.cn

Faculty of Computer Science, ILMA University, Karachi 75190, Pakistan2

State Grid Management College, State Grid Management College, Beijing, China3

(Received Nov. 26, 2020; Revised and Accepted May 6, 2021; First Online Nov. 5, 2021)

Abstract

Web applications are still the preferred target for cyber-
criminals, as these applications have achieved widespread
popularity among individuals and companies. The cross-
site scripting attack (XSS) is one of the most severe con-
cerns highlighted at the forefront of information security
experts’ reports. In this study, we proposed the NLP-
SVM method to detect web-based XSS attacks. The
method used Natural Language Processing (NLP) for pro-
cessing text payload attacks and the SVM model for the
detection task. The XSS attack payloads were converted
into vectors at payload-level instead of word embedding-
level. Subsequently, the generated vectors were used for
modeling using a support vector machine (SVM) algo-
rithm. The proposed method has successfully surpassed
double-check tests include the 10-fold cross-validation
approach and the hold-out dataset approach. Exten-
sive analyses of the results determine that the proposed
method can efficiently and effectively detect the XSS-
based attacks with minimum FN and FP rates. Further-
more, the proposed method had many worthy advantages
over the well-known eight algorithms that used the same
data. It achieved promising and state-of-the-art results
with accuracy, precision, detection probabilities, F-Score,
FN rate, FP rate, Misclassification, and AUC-ROC scores
of 99.44%, 99.54%, 99.64%, 99.59%, 0.4%, 1.0%, 0.56%,
and 99.33%, respectively.

Keywords: Attack Detection; Cross-Site Scripting at-
tack (XSS); Embedding Vectors; Natural Language Pro-
cessing (NLP); Support Vector Machine (SVM); Web Ap-
plication Security

1 Introduction

With the development of technology and the Internet’s
availability everywhere, web applications have occupied
a prominent place among the people, and a growing in-
terest by profit and non-profit organizations. Simulta-
neously, cybercriminals’ desire has increased to target
these applications to obtain informational or financial
gains. According to the Common Vulnerability Scoring
System (CVSS), the overall number of new vulnerabili-
ties increased by 17.6% (from 17,308 in 2018 to 20,362
in 2019) [16]. Consequently, this increase represents
the keen security concern for various applications, No-
tably, those carried out in high priority facilities or high-
availability operations, such as medical care, banking, e-
commerce, etc. [13].

One of the most concerned and high-risk cyber-attacks
on web applications is Cross-Site Scripting (XSS). The
cybercriminals exploit vulnerabilities in the web applica-
tion to inject their malicious code into the HTML pages,
typically in script form executed on users browsers. The
cyber-criminals can then extract personal information or
steal user cookies to hijack an identity in a fraud session.
Consequently, They can steal confidential data or even
take hold of those devices [13,15,22].

Recently, XSS vulnerabilities continued to grow and
ranked as the second most common vulnerability at 14%
among 2018 web application vulnerabilities, and they still
the second most common vulnerability in 2019. Further-
more, the XSS vulnerabilities were the most common by
44.6% (703) in 2019 of all the 1530 WordPress vulnerabil-
ities [17]. Additionally, XSS enlisted as the most attack
vectors, nearly 40% of all attacks used against web appli-
cations in 2019, as per PreciseSecurity research [18].

Despite many tools existing to check malicious code
existence and the awareness of these vulnerabilities, their

International Journal of Network Security(VDOI: 1816-3548-2021-00005) 2

number will not decrease in the future. The immediate
impact of the exploit of these vulnerabilities, as well as
the lack of preconditions required to exploit them in most
cases, could be the main reason for this.

Many researchers in the web security domain have used
different techniques such as traditional-based and ma-
chine learning-based to mitigate and detect this type of
cyber-attack, operating them on the server-side, client-
side, or both [27]. However, they all still face some limi-
tations present to

1) Have remarkable missing cases, that is, false nega-
tive (FN) rate;

2) Produce an unignorable issue of false positive (FP
rate).

The FN issue is crucial since the real threat will pass the
system undetected, leading to a complete penetration of
the system, losing a lot, such as reputation or financial
point of view. In contrast, the FP problematic will cause
the legitimate user to be deprived of the service. Further,
a heavy burden will add to the security system specialists
that will investigate, waste much time, and lose user’s
confidence and, therefore, companies losing money.

This study proposed the NLP-SVM method to detect
web-based XSS attacks to overcome the FN and FP is-
sues, which is highly efficient and has the tendency to de-
feat such cyber-attacks. The proposed method processes
the attacks text payload using Natural Language Process-
ing (NLP). It provides the attack vectors at payload-level
instead of word embedding-level to fit the support vec-
tor machine algorithm for modelling. More than 20200
samples of XSS text payloads were used, and the method
was tested using double-check. that is, our method was
tested using 10-fold cross-validation and hold-out testing
dataset. Extensive analyses of the results determine that
the proposed method able to detect the XSS-based at-
tacks efficiently and effectively with minimum FN and
FP. Furthermore, the proposed method had many wor-
thy advantages compared to eight algorithms that used
the same data. It achieved promising and state of the art
results with accuracy, precision, detection probabilities,
F-Score, FN rate, FP rate, Misclassification, and AUC-
ROC scores of 99.44%, 99.54%, 99.64%, 99.59%, 0.4%,
1.0%, 0.56%, and 99.33%, respectively.

The rest of this study is organized as follows: Sec-
tion 2 discusses the most recent related work. Section 3
presents the essential details about this study’s methodol-
ogy and techniques. While Section 4 offers the experimen-
tal design and evaluation mechanism strategy, including
in-deep details about results, discussion, and comparing
the proposed with different eight algorithms. Finally, sec-
tion 5 concludes this study with its significance and high-
lights future research directions.

2 Related Work

Many researchers using traditional-based XSS attack
mitigation including pattern filtering [28] sanitization-
based [2], browser extension [11, 23, 26], proxy-based [8]
signatures of script code [21], and Content security pol-
icy (CSP) [6]; More details can be find in [20]. These
traditional methods are still facing some limitations, es-
pecially in the FP rate. The researchers have been moved
to a machine learning technique to improve such an at-
tack’s detection rate.

In the study presented in [1] the authors used the
word2vec tool to determine the occurrence frequency and
coincidence of XSS scripts payloads. The occurrence fre-
quency vectors are used for modelling using different ma-
chine learning models. However, using the frequency of
occurrence and coincidence resulting in large and sparse
vectors (mostly 0 values) describes script but not the
meaning of the words.

The dynamic feature extraction from content and in-
tegrates it with Artificial neural networks (MLP) for the
detection task has been proposed in [13]. However, the
detection rate of 98.35% needs to improve.

A study proposed by the authors in [4] presents the
Browser-based method as defenses against XSS attacks
using tokens authentication. Their method hypothesis
was based on 2464 cookies gathered from 215 ranked web-
sites; Then, the problem was formulated as a binary clas-
sification, and different ML algorithms were used for clas-
sification. However, using only tokens authentication is
not enough to defeat such attacks. Further, the best de-
tection rate obtained with a random forest model was
83%. In [25], the authors proposed a model for malicious
code detection using the stacked denoising autoencoder
technique, which resulted in big dimensions, forcing the
authors to use sparse random projections for dimensions
reduction. However, the FP and the detection rate were
4.2% and 93%, respectively, which is inadequate for de-
tecting malicious attacks.

In the study [19], the authors proposed the XSS attacks
classification model for social sites. They applied various
algorithms that trained on 100 samples only. However,
the dataset is too small and a detection rate score of 0.949.

Wang et al. [24] introduced a hybrid analysis method
to detect malicious web pages. They used three gropes of
features includes URL, HTML, and JavaScript, to clas-
sify malicious pages. The result of the detection rate was
88.20%, which is inadequate for detecting malicious at-
tacks.

3 Detection Methodology

3.1 XSS Payload-Level Vector

Since the XSS payloads data are usually in script form,
machine learning requires that we first represent the text
numerically. The straightforward bag-words model en-
coding schemes such as frequencies and word counts gen-

International Journal of Network Security(VDOI: 1816-3548-2021-00005) 3

Table 1: Examples of payload attacks in the dataset

No Payload Class
1 <link rel=import href=data:text/html,<script>alert(1)</script> XSS
2 &”;!–>XSS <=&{()} XSS
3 <SCRIPT>alert(’XSS’);</SCRIPT> XSS
4 <svg xmlns=http://www.w3.org/2000/svg” onload=”alert(document.domain)”/> XSS
5 <script/src=data:,eval(atob(location.hash.slice(1)))//#alert(1) XSS
6 <a href=”/wiki/Social software” title=”Social software”¿Social information systems

XSS

7 <a href=”/wiki/Dreyfus%27 critique of artificial intelligence” class=”mw-redirect” ti-
tle=”Dreyfus' critique of artificial intelligence”>Dreyfus’ critique of artificial intelligence
:

XSS

erate huge and sparse vectors. Therefore, the word vec-
tors also called the word embeddings technique is intro-
duced to represent each word numerically so that the
vector corresponds to how that word is used or what it
means. Word embeddings are learned by considering the
context. That is, getting the meaning of words from their
appearance in context. The word vector approach fur-
ther improves straightforward bag-words model encoding
schemes. The words that appear in similar contexts will
have similar vectors. However, using this method result-
ing in 94-dimensional for each word. Since we do not
have word-level labels and only have XSS attack payload-
level labels, ML models won’t be able to use the word-
level embedding. Therefore, the vector representation at
payload-level for each attack sample is needed. To deal
with this issue, we averaged each word’s vectors (word-
level) for each attack payload and obtained a single vec-
tor at payload-level for each sample. Then, these vectors
are used as input for modelling. The NLP is used to
pre-processing the XSS attack payload. In particular, we
used the current and efficient framework in NLP called
spaCy [9]. It is a free and open-source library for ad-
vanced (NLP) in Python specifically built for production
use and helps create applications that comprehend and
process large volumes of text. It can create knowledge
extraction, natural language comprehension systems, and
pre-process text for ML or Deep learning.

spaCy provides embedding learned from a model called
Word2Vec [12] and can calculate the average XSS attack
vectors obtaining by doc.vector class. These attack vec-
tors are passed to scikit-learn models. The steps of our
method are presented with (Algorithm 1).

3.2 Collection XSS Dataset

The XSS payload attacks consist of 3944 samples were col-
lected from PortSwigger Research [17] and Github repos-
itory [7]. The benign payloads consist of 6313 samples
were gathered from [10]. Table 1 present a few payload
samples.

Looking at sample No.1 in Table 1 as an example, when
the XSS payload is converted into a word vector, we got
a vector for each word, each vector with 96-dominations.

Algorithm 1 NLP-SVM steps

1: Begin
2: Initial dataset upload:
3: Initialize the observations storage.
4: for each XSS text payload in the dataset do
5: Tokenized payload into the sequence of token
6: for each token do
7: Get the vector representation
8: end for
9: Calculate the average vectors for each token in the

payload
10: Combine all the tokens vectors into a single payload

vector
11: Append payload vector with its label
12: end for
13: Use payload vectors as input to training ML models
14: Validation ML using the 10-fold cross-validation

method
15: Test the fully training model on a hold-out data set
16: End

That is 27 vectors, each with 96-dimensions, making ma-
chine learning model inability to learn. Furthermore, the
payloads within the dataset do not have word-level la-
bels and only have the payloads-level labels. Therefore,
each payload’s vector representation is obtained using
word’s vectors’ average and used the labels at payload-
level. Later, we obtained 20257 vectors, each with 96-
dimensions for the entire dataset. Table 2 shows the word
level vectors and the payload-level vector dimensions.

3.3 Machine Learning Model

Although machine learning has gained a prominent place
in cybersecurity, most XSS-based attack detection mod-
els still suffer some limitations. Precisely, there are lim-
itations in low detection rate, high false-positive alerts,
or high false-negative alerts. Therefore, machine learning
models need clean and accurate data to be able to detect
attacks efficiently. One of the most popular algorithms
is the support vector machine (SVM). SVM is a robust
supervised learning algorithm used for classification, re-

International Journal of Network Security(VDOI: 1816-3548-2021-00005) 4

Table 2: Payload attack tokens with word-level and payload level vector-dimensions

Payload Payload tokens World
victors-
dimen-
sions

Payload
vector-
dimen-
sions

Entire
dataset
dimen-
sions

<link rel= import
href=data:text/html,<
script>
alert(1)</script>

<, link, rel= import, href, =
data, :, text, /, html, &comma,;,
<,;, script, >,; alert(1),<,;
&sol,; script, >,;

(27, 96) (1, 96) (20257,
96)

gression, and outlier detection [22].
Given training vectors xi ∈ ℜn, i = 1, ..., N ,

and their corresponding labels from two classes
yi ∈ {−1, 1}, i = 1, ..., N, the classification problem
is formulated as Equation (1).

yi(x) = ωTϕ(x) + b. (1)

Where ϕ is the feature-space transformation function, w
is vectors and b is the linear classification bias.

The SVM objective is to find the optimal hyper-plane
w ∈ Rn in N-dimensional space and distinctly classify
the data points by maximizing the nearest positive and
negative samples’ margin. This procedure is expressed in
Equation (2):

minmax
wb

= 1
2 subject to : yi(x) = ωTϕ(x) + b. (2)

However, calculating ϕ(x) is very ineffectual and could
be impossible because of the introduction of the La-
grange multipliers α = {αi}, i = 1, ..., N. Therefore, the
former minimization problem is converted into a max-
imization problem [5]. Further, the feature space can
be high-dimensional and may have infinite dimensions.
The kernel function is introduced to implicitly define the
feature space and efficiently compute very high dimen-
sional spaces. Furthermore, the controller parameters,
also known as soft-margin, that allow the violation of the
margin constraint are introduced to solve the optimiza-
tion problem. The kernel function with its parameters is
shown in Equation (3). In our experiment, we used the
Radial basis function (RBF) defined in Equation (4).

max
α

Dγ (α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
i=1

αiαjyiyjκγ (xixj),

subjectto :=
{∑

yiαi=0∀i
0≤αi≤C∀i

(3)

where κγ refers to the RBF function kernel is defined as in
Equation (4), and C refers to a regularization term that
controls the allowed misclassification-level for the training
samples. The maxα Dγ (α) is the quantity of an upper
bound on misclassification probability of kernel κγ .

κγ (x, y) = exp−γ(x−y)2

(4)

We tuned γ parameter (gamma) to 0.01 and C parameter
to 5 based on practical experiments.

3.4 Experimental and Evaluation

3.5 Dataset Subdivisions

The dataset consists of 20,257 text payload samples, in
which 6,313 are benign, and 13,944 are malicious. The
dataset has been split randomly and separately into two
parts with a ratio of 70%: 30%: for training and testing
sets, respectively. The details of the complete dataset are
shown in Table 3.

Table 3: Dataset subdivisions

Name Benign Malicious Total
Training dataset 4392 9787 14179
Hold-Out dataset 1921 4157 6078
Total dataset 6313 13944 20257

3.6 Performance Evaluation Metrics

In this research, accuracy, precision, detection rate (DR),
Error Rate, false positive, false negative, F-score, and
ROC-AUC curves are selected to evaluate the perfor-
mance of the proposed scheme. These measurements
are based on confusion matrix [14]. The TN represents
whether the normal case is correctly classified as normal
or not. FP or type I error means the normal cases that are
incorrectly labeled as an XSS attack. FN or type II error
represents an XSS payloads attacks that are incorrectly
identified as normal. TP means that an attack payload
is correctly identified as an attack. The detailed deriva-
tion of the selected performance metrics are shown in the
following equations:

Precision =

(
TP

TP + FP

)
DetectionRate =

(
TP

TP + FN

)
TPRate =

(
FP

TN + FP

)
FNRate =

(
FN

TP + FN

)
F − score = 2

(
Recall × precision

Recall + precision

)

International Journal of Network Security(VDOI: 1816-3548-2021-00005) 5

LR LDA K-NN CART NB SVM AB GBM RF
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00
Algorithms Rsults

Figure 1: Comparison of algorithms results

MisclassificationRate =

(
FP + FN

TP + TN + FP + FN

)
ROC −AUC =

1

2

(
TP

TP + FN

)
+

(
TN

TN + FP

)

3.7 Results and Discussion

In this study, SVM alongside eight ML algorithms are
implemented, including Logistic Regression (LR), Linear
Discriminant Analysis (LDA), K-Neighbors (KNN), De-
cision Tree (CART), GaussianNB (NB), AdaBoost (AB),
Gradient Boosting (GB), and Random Forest (RF) [3].
The entire experiments were done on the operating plat-
form LinuxMint-19-tara, 16 GB RAM, Intel Xeon CPU
E-5-2620 v3@ 2.40GHz, GPU NIVIDA (Quadro K220).
SpaCy version is V2.0, and the Python version is 3.6.7.
For strict validation of our model’s proposal, we used
double-check. All models are trained and tested using 10-
fold cross-validation at the first check. Then the Hold-Out
test set is used to assess the performance of the final and
fully trained models. Overall, the results achieved by all
the algorithms were promising. However, the SVM model
achieves superior results in both 10-fold cross-validation
and the hold-out dataset test. Figure 1 shows that the
SVM performance comes in the first position, within an
accuracy of 0.9929 and 0.0028 standard deviation. Fol-
lowed by RF, KNN, GBM, LR, LDA, CART, and NB
score of 0.989632, 0.987023, 0.984484, 0.979759, 0.975034,
0.968193, and 0.929121, respectively.

The NLP-SVM model then was tested under 10-fold
cross-validation. The SVM parameters of gamma and C
were tuning to 0.01 and 5, respectively. The NLP-SVM
testing result demonstrated the ability and effectiveness of
the model to detect the XSS payloads. Figure 2 shows the
NLP-SVM learning and testing curve. The convergence
and smoothness between the learning curve and the ver-
ification curve indicate that the model learns very well,
especially after 4000 sample size.

To clarify the NLP-SVM discriminative robustness, we
evaluated it with the ROC curve (receiver operating char-
acteristic). The ROC curve is a crucial measure for any
classification model’s performance that visualizes classi-

2000 4000 6000 8000 10000 12000
Training Data Size

0.9725

0.9750

0.9775

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

M
od

el
 a

cc
ur

ac
y

Learning Curve

Training Accuracy
Validation Accuracy

Figure 2: NLP-SVM learning and validation curves with
10-fold

fication efficiency and provides a full sense of its perfor-
mance. Verification of NLP-SVM was applied at fold-
level, and the mean of 10-fold was calculated. The Fig-
ure 3(a) and 3(b) shown the ROC curves performance of
NLP-SVM. The mean area under the ROC curve was 0.99
with ?00, proving the model’s robustness and ability to
detect XSS attacks.

Furthermore, The NLP-SVM model was evaluated by
a score and scalability functions. Figure 4 shows the
model’s results evaluation consisting of (A) Score Vs.
Training samples, (B) Scalability Vs. Fit-times, and (C)
the performance Vs. Training samples. The results clear
that the model has a powerful ability to detect XSS-based
attacks. All evaluation results are very consistent and
harmonic, which is another strong proof of our proposal
outstanding performance.

The second evaluation was done by testing all models
on the hold-out dataset. This process was performed af-
ter all models were training. The confusion matrix of all
models is shown in Table 4. We provided in-depth details
with extensive evaluation measurements to compare all
the models’ results in Table 5. Although the performance
of all algorithms was efficient, there are some different
crucial points. Compared to SVM, we can see that some
models are selective behave. They have higher precision
than the detection rate, resulting in an increased FN rate,
which means that the real threats will pass through the
system undetected. The LR, LDA, CART, NB, AB, and
GBM are examples of this category. Another observation
is that some models have low precision and low detection
rate, resulting in increased FP and FN simultaneously.
The NB and CART are examples of this category.

Furthermore, some models have difficulty distinguish-
ing between benign and attack samples where the XSS
attack class results are very well, but the benign class re-
sults are not. Therefore, they classify many benign sam-
ples as attacks, leading to an increasing FP rate. The
RF, GBM, AB, NB, CART, LDA, and LR are Fall in this
category.

On the other hand, the proposed model is an ideal

International Journal of Network Security(VDOI: 1816-3548-2021-00005) 6

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC of SVCXSS

ROC fold 0 (AUC = 0.99)
ROC fold 1 (AUC = 0.99)
ROC fold 2 (AUC = 1.00)
ROC fold 3 (AUC = 1.00)
ROC fold 4 (AUC = 0.99)
ROC fold 5 (AUC = 0.99)
ROC fold 6 (AUC = 1.00)
ROC fold 7 (AUC = 0.99)
ROC fold 8 (AUC = 1.00)
ROC fold 9 (AUC = 0.99)
Chance
Mean ROC (AUC = 0.99 ± 0.00)
± 1 std. dev.

(a)

0.00 0.05 0.10 0.15 0.20 0.25
False Positive Rate

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ue

 P
os

iti
ve

 R
at

e

ROC of SVCXSS

ROC fold 0 (AUC = 0.99)
ROC fold 1 (AUC = 0.99)
ROC fold 2 (AUC = 1.00)
ROC fold 3 (AUC = 1.00)
ROC fold 4 (AUC = 0.99)
ROC fold 5 (AUC = 0.99)
ROC fold 6 (AUC = 1.00)
ROC fold 7 (AUC = 0.99)
ROC fold 8 (AUC = 1.00)
ROC fold 9 (AUC = 0.99)
Chance
Mean ROC (AUC = 0.99 ± 0.00)
± 1 std. dev.

(b)

Figure 3: The ROC curves performance of NLP-SVM. (a)SVM model ROC curve for each fold and the mean with
a standard deviation, (b) SVM model ROC curve for each fold and the mean with a standard deviation Zoning on
the top left.

2000 4000 6000 8000 10000 12000
Training examples

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sco
re

Learning Curves (SVM, RBF kernel, = 0.01)

Training score
Cross-validation score

2000 4000 6000 8000 10000 12000
Training examples

0.0

0.5

1.0

1.5

2.0

fit_
tim

es

Scalability of the model

0.0 0.5 1.0 1.5 2.0
fit_times

0.9725

0.9750

0.9775

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

Sco
re

Performance of the model

Figure 4: (A) Model learning curve score, (B) show the scalability curve of the model, and (C) show the Model
performance curve

model by all measures, which have minimal false nega-
tives and false positives simultaneously. The false nega-
tives score is 0.004 (0.4%), and the false positives score
is 0.010 (1.0%), as shown in Figure 5. This ideal result
is crucial in such security systems. The FNs are posing
real threats to the system. They may lead to a complete
penetration of the system, losing a lot, such as reputation
or financial point of view. Therefore, it must be taken
into consideration very well.

Due to the FP, the legitimate user may deprive of the
service. A heavy burden will add to the security system
specialists that will investigate, waste much time, and lose
users and money’s confidence. Therefore, the FP must
be reduced to the maximum extent. Other pointers to
our proposed model’s robustness are the ROC carve and
F-score measurements. The area under the ROC curve
reaches 99.33%, and the F-score to 99.35%, reflecting the
harmony of accuracy and recall and implies the model’s
power.

Normal Attack
Predicted

No
rm

al
At

ta
ck

Ac
tu

al

99.0%
1902/1921

1.0%
19

0.4%
15

99.6%
4142/4157

Confusion matrix analysis

800

1600

2400

3200

4000

Figure 5: NLP-SVM confusion matrix with analyzing

International Journal of Network Security(VDOI: 1816-3548-2021-00005) 7

Table 4: Confusion matrix of all models on hold-out
dataset

Model TP FN TN FP Total Samples
LR 1841 48 4109 80 6078
LDA 1840 67 4090 81 6078
K-NN 1903 60 4097 18 6078
CART 1816 95 4062 105 6078
NB 1616 136 4021 305 6078
AB 1820 74 4083 101 6078
GBM 1855 37 4120 66 6078
RF 1881 24 4133 40 6078
SVM 1902 15 4142 19 6078

3.8 Comparison with Previous Works

This section compares our work with the reported results
of three previous related works in [1, 19, 24], as shown in
Table 6. The studies we compare our work with were
discussed in more detail in the related work section.

The comparison results demonstrate our proposed
work performance is better than others in most measure-
ment. Notably, NLP-SVM’s detection rate is the high-
est, which is critical in such attacks detection systems.
Furthermore, we assessed our proposed work on various
performance metrics not mentioned in the relevant works.

4 Conclusions

This study presents NLP-SVM model using average word
embedding method to detected web-based XSS attacks.
Our proposal is used NLP for processing text payloads at-
tacks and the SVM model for the detection task. The de-
tection model has been proved efficient to achieve higher
accuracy and a remarkable detection rate with minimal
False Positive and Negative rates. The NLP-SVM model
adopted a large dataset for training and testing. Numer-
ous analyses have been performed to test the proposed
model at various stages. The experimental results con-
firm the efficiency and idealism of the NLP-SVM method
with significant perfection and harmony of performance
on multiple measurements of both classes, compared to
eight ML algorithms. Moreover, the proposed model out-
performs all models in all aspects.

Although our method has proven highly efficient in de-
tecting such attacks, the attack payloads should be ex-
tracted from the content to detect the attack automati-
cally. This task will be our future work, as we plan to pro-
pose a mechanism for the automatic extraction the attack
payload from the content and integrated with NLP-SVM
model.

References

[1] S. Akaishi and R. Uda, “Classification of xss attacks
by machine learning with frequency of appearance

and co-occurrence,” in The 53rd Annual Conference
on Information Sciences and Systems (CISS’19),
pp. 1–6, 2019.

[2] P. Biswajit, G. Tyler, and M. Priyanka, “Handling
cross site scripting attacks using cache check to re-
duce webpage rendering time with elimination of
sanitization and filtering in light weight mobile web
browser,” in First Conference on Mobile and Secure
Services (MOBISECSERV’15), pp. 1–7, 2015.

[3] G. Bonaccorso, Machine Learning Algorithms: Pop-
ular Algorithms for Data Science and Machine
Learning, 2018. ISBN: 1789347998.

[4] S. Calzavara, G. Tolomei, A. Casini, M. Bugliesi, and
S. Orlando, “A supervised learning approach to pro-
tect client authentication on the web,” ACM Trans-
actions on the Web (TWEB’15), vol. 9, no. 3, pp. 1–
30, 2015.

[5] M. U. Diwekar, “Introduction to applied optimiza-
tion,” Springer Optimization and Its Applications,
vol. 22, 2020.

[6] I. Dolnák, “Content security policy (CSP) as coun-
termeasure to cross site scripting (XSS) attacks,”
in The 15th International Conference on Emerg-
ing eLearning Technologies and Applications (IC-
ETA’17), pp. 1–4, 2017.

[7] GitHub.com. Cross Site Scripting (XSS) Vulner-
ability Payload List, 2020. (https://github.com/
payloadbox/xss-payload-list)

[8] S. Goswami, N. Hoque, D. K. Bhattacharyya, and J.
Kalita, “An unsupervised method for detection of xss
attack,” International Journal of Network Security,
vol. 19, no. 5, pp. 761–775, 2017.

[9] M. Honnibal I. and Montani, “SpaCy 2: Natural lan-
guage understanding with bloom embeddings, convo-
lutional neural networks and incremental parsing,”
To Appear, vol. 7, no. 1, pp. 411–420, 2017.

[10] Kaggle.com. Cross Site Scripting XSS
Dataset for Deep Learning, 2020. (https:
//www.kaggle.com/syedsaqlainhussain/

cross-site-scripting-xss-dataset-for

-deep-learning)
[11] B. Mewara, S. Bairwa, J. Gajrani, and V. Jain, “En-

hanced browser defense for reflected cross-site script-
ing,” in Proceedings of 3rd International Conference
on Reliability, Infocom Technologies and Optimiza-
tion, pp. 1–6, 2014.

[12] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch,
and A. Joulin, “Advances in pre-training distributed
word representations,” Computation and Language,
2017. arXiv:1712.09405.

[13] F. M. M. Mokbal, D. Wang, I. Azhar, J. Lin, F.
Akhtar, and X. Wang, “MLPXSS: An integrated
XSS-based attack detection scheme in web applica-
tions using multilayer perceptron technique,” IEEE
Access, vol. 7, no. 1, pp. 100567–100580, 2019.

[14] F. M. M. Mokbal, D. Wang, X. Wang, and L. Fu,
“Data augmentation-based conditional wasserstein
generative adversarial network-gradient penalty for

https://github.com/payloadbox/xss-payload-list
https://github.com/payloadbox/xss-payload-list
https://www.kaggle.com/syedsaqlainhussain/cross-site-scripting-xss-dataset-for
https://www.kaggle.com/syedsaqlainhussain/cross-site-scripting-xss-dataset-for
https://www.kaggle.com/syedsaqlainhussain/cross-site-scripting-xss-dataset-for
-deep-learning

International Journal of Network Security(VDOI: 1816-3548-2021-00005) 8

Table 5: Experiments results analysis for all models on a hold-out dataset

Model Class P DR F-S AC FN FP ER ROC

LR
XSS 0.9809 0.9885 0.9847 0.9789

(97.89%)

0.012

(1.2%)

0.042

(4.2%)

0.0211

(2.11%)

9734

(97.34%)
Non-XSS 0.9746 0.9584 0.9664
macro avg 0.9777 0.9734 0.9755

LDA
XSS 0.9806 0.9839 0.9822 0.9756

(97.56%)

0.016

(1.6%)

0.042

(4.2%)

0.0244

(2.44%)

0.9709

(97.09%)
Non-XSS 0.9649 0.9578 0.9613
macro avg 0.9727 0.9709 0.9718

K-NN
XSS 0.9956 0.9856 0.9906 0.9871

(98.71%)

0.014

(1.4%)

0.009

(0.9%)

0.0192

(1.29%)

0.9881

(98.81%)
Non-XSS 0.9694 0.9906 0.9799
macro avg 0.9825 0.9881 0.9852

CART
XSS 0.9748 0.9771 0.9760 0.9664

(96.64%)

0.023

(2.3%)

0.055

(5.5%)

0.0336

(3.36%)

0.9612

(96.12%)
Non-XSS 0.9503 0.9453 0.9478
macro avg 0.9625 0.9612 0.9619

NB
XSS 0.9295 0.9673 0.9480 0.9274

(92.74%)

0.033

(3.3%)

0.159

(15.9%)

0.0726

(7.26%)

0.9043

(90.43%)
Non-XSS 0.9224 0.8412 0.8799
macro avg 0.9259 0.9043 0.9140

AB
XSS 0.9759 0.9822 0.9790 0.9712

(97.71%)

0.018

(1.8%)

0.053

(5.3%)

0.0288

(2.88%)

0.9648

(96.48%)
Non-XSS 0.9609 0.9474 0.9541
macro avg 0.9684 0.9648 0.9666

GBM
XSS 0.9842 0.9911 0.9877 0.9830

(98.30%)

0.009

(0.9%)

0.034

(3.4%)

0.017

(1.7%)

0.9784

(97.84%)
Non-XSS 0.9804 0.9656 0.9730
macro avg 0.9823 0.9784 0.9803

RF
XSS 0.9904 0.9942 0.9923 0.9895

(98.95%)

0.006

(0.6%)

0.021

(2.1%)

0.0105

(1.05%)

0.9867

(98.67%)
Non-XSS 0.9874 0.9792 0.9833
macro avg 0.9889 0.9867 0.9878

SVM
XSS 0.9954 0.9964 0.9959 0.9944

(99.44%)

0.004

(0.4%)

0.010

(1.0%)

0.0056

(0.56%)

0.9933

(99.33%)
Non-XSS 0.9922 0.9901 0.9911
macro avg 0.9938 0.9933 0.9935

P= Precision, DR= Detection Rate, F-S= F-score, AC= Accuracy overall, FN= FN Rate, FP= FP Rate, ER=
Misclassification rate (Error Rate), ROC= AUC-ROC

Table 6: Comparison with previous proposed works

Model Accuracy Precision Detection Rate F-score FP FN ROC
Decision Tree [24] - 0.9520 0.882 0.916 - - 0.9479
CNN+SVM [1] 0.9937 0.9978 0.9886 0.9936 - - -
Random Forest [19] 0.972 0.977 0.971 0.974 0.087 - -
NLP-SVM(This Work) 0.9944 0.9954 0.9964 0.9959 0.010 0.004 0.9933

xss attack detection system,” PeerJ Computer Sci-
ence, vol. 6, p. e328, 2020.

[15] E. Mugaboand and Q. Y. Zhang, “Intrusion detec-
tion method based on support vector machine and
information gain for mobile cloud computing,” Inter-
national Journal of Network Security, vol. 22, no. 2,
pp. 231–241, 2020.

[16] NVD.nist.gov. NVD - vulnerability metrics, 2020.
(https://nvd.nist.gov/vuln-metrics/cvss)

[17] PortSwigger research. Cross Site Scripting
(XSS) Research, 2020. (https://nvd.nist.gov/
vuln-metrics/cvss)

[18] PreciseSecurity.com. Cross-site scripting (XSS)
makes nearly 40% of all cyber attacks in 2019, 2020.
(https://www.precisesecurity.com/articles/

cross-site-scripting-xss-makes-nearly-40

-of-all-cyber-attacks-in-2019/)

[19] S. Rathore, P. K. Sharma, and J. H. Park, “XSSclas-
sifier: An efficient XSS attack detection approach
based on machine learning classifier on SNSS,” Jour-
nal of Information Processing Systems, vol. 13, no. 4,
2017.

[20] G. E. Rodŕıguez, J. G. Torres, P. Flores, and D. E.
Benavides, “Cross-site scripting (XSS) attacks and
mitigation: A survey,” Computer Networks, vol. 166,
pp. 106960, 2020.

[21] H. Shahriar and H. M. Haddad, “Client-side detec-
tion of clickjacking attacks,” International Journal of
Information Security and Privacy (IJISP’15), vol. 9,
no. 1, pp. 1–25, 2015.

https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://www.precisesecurity.com/articles/cross-site-scripting-xss-makes-nearly-40
https://www.precisesecurity.com/articles/cross-site-scripting-xss-makes-nearly-40
-of-all-cyber-attacks-in-2019/

International Journal of Network Security(VDOI: 1816-3548-2021-00005) 9

[22] S. Shan, “Support vector machine,” in Machine
Learning Models and Algorithms for Big Data Clas-
sification, pp. 207–235, 2016.

[23] A. P. Sivanesan, A. Mathur, and A. Y. Javaid, “A
google chromium browser extension for detecting
XSS attack in HTML5 based websites,” in IEEE In-
ternational Conference on Electro/Information Tech-
nology (EIT’18), pp. 0302–0304, 2018.

[24] R. Wang, Y. Zhu, J. Tan, and B. Zhou, “Detection of
malicious web pages based on hybrid analysis,” Jour-
nal of Information Security and Applications, vol. 35,
pp. 68–74, 2017.

[25] Y. Wang, W. D. Cai, and P. C. Wei, “A deep learning
approach for detecting malicious javascript code,”
Security and Communication Networks, vol. 9,
no. 11, pp. 1520–1534, 2016.

[26] C. Wang and Y. Zhou, “A new cross-site scripting de-
tection mechanism integrated with HTML5 and cors
properties by using browser extensions,” in Interna-
tional Computer Symposium (ICS’16), pp. 264–269,
2016.

[27] H. Yulianton, H. Warnars, B. Soewito, F. L. Gaol,
and E. Abdurachman, “Web security and vulnera-
bility: A literature review,” in Journal of Physics:
Conference Series, vol. 1477, pp. 022028, 2020.

[28] I. Yusof, A. S. K. Pathan, “Preventing persistent
cross-site scripting (XSS) attack by applying pattern
filtering approach,” in The 5th International Confer-
ence on Information and Communication Technology
for The Muslim World (ICT4M’14), pp. 1–6, 2014.

Biography

Fawaz Mokbal received his BS degree in Computer Sci-
ence from Thamar University, Yemen, and MS degree
in Information Technology from the University of Agri-
culture, Pakistan. He is currently a PhD researcher in
Computer Science and Technology with Beijing Univer-
sity of Technology, China. He also an Assistant Professor
with the Faculty of Computer Science at ILMA Univer-
sity, Pakistan. He has served as head of the Technical
Team of Information Center Project for the local Author-
ity for 2 years, and Manager of Information Systems at
Ministry of Local Administration 5 years. He is the au-
thor and reviewer with various SCI, EI, and Scopus in-
dexed journals. His interest area includes Machine and
Deep Learning, Artificial Neural Networks, Medical Im-
ages, Web Application Security, and IoT security issues.

Wang Dan received the B.S. degree in computer appli-
cation, the M.S. degree in computer software and theory,
and the Ph.D. degree in computer software and theory
from Northeastern University, China, in 1991, 1996, and
2002, respectively. She is currently a Professor with the
College of Computer Science, Beijing University of Tech-
nology. She is the author and reviewer with various SCI,
EI, and Scopus indexed journals. Her major areas of inter-
ests include trusted software, web security, and big data.

Wang Xiaoxireceived his MS degree in Computer Tech-
nology from Beijing University of Technology. He is cur-
rently working as an engineer in State Grid Management
College. His major area of interest is Computer Network.

	Introduction
	Related Work
	Detection Methodology
	XSS Payload-Level Vector
	Collection XSS Dataset
	Machine Learning Model
	Experimental and Evaluation
	Dataset Subdivisions
	Performance Evaluation Metrics
	Results and Discussion
	Comparison with Previous Works

	Conclusions
	REFERENCES

