
International Journal of Network Security(VDOI: 1816-3548-2021-00007) 1

A Framework for Detecting
Compatibility-Issues-Proneness Apps Based on

Multimodal Analysis in Android Platform

Chen Xu1, Caimei Wang2, Yan Xiong1, Wenchao Huang1, Zhaoyi Meng1, and Fuyou Miao1

(Corresponding author: Caimei Wang)

School of Computer Science and Technology, University of Science and Technology of China 1

Elec-3 (Diansan) Building, West Campus of USTC, Huang Shan Road, Hefei, Anhui Province, China

Department of Computer Science, Hefei University2

Building 38, No. 99, Jinxiu Avenue, Hefei, Anhui Province, China

Email: wangcmo@mail.ustc.edu.cn

(Received Jan. 6, 2021; Revised and Accepted July 5, 2021; First Online Nov. 13, 2021)

Abstract

With the prosperity of Android, the compatibility issues
in apps cause security flaws and bring damages to the user
experience. Unfortunately, recent studies cannot help
the developer to identify the apps that are compatibility-
issue-proneness. It motivates us to propose an automated
approach to identify these apps derived from multimodal
learning. To this goal, we first present some potential
modalities of apps based on previous insight and then
leverage statistical methods to test the modalities. Fi-
nally, we use the selected modalities to identify these apps
on a real dataset. Experimental results on apps demon-
strate the effectiveness of our work.

Keywords: Android; Compatibility Issues; Modality

1 Introduction

Android has been the largest mobile platform in the
world, with 74.43 % market share of global smartphone
shipments in Sept 2020 [28]. For profits and the compet-
itive power, manufacturers (e.g., Xiaomi, Huawei, Sam-
sung) choose to release new devices and customized sys-
tems on the Android platform. At the I/O developer con-
ference in 2019, Google announced that there are more
than 2.5 billion active Android devices with 180 hardware
manufacturers [7]. Given the large number of devices with
different hardware and system configurations, it is a non-
trivial task for Android developers to ensure their apps
behave as expected among those myriad devices as pos-
sible [11]. The cross-devices inconsistencies problem is
defined as the compatibility issue in many studies [30,33].
The compatibility issue may bring damage to user experi-
ence and cause security issues [11, 34]. For this reason, it
was reported that 94% of developers identified the issues

as the main reason to cause themselves to avoid working
on the Android platform [17,22].

The problem of identifying compatibility-issue-
proneness apps is crucial because it is good for each
stakeholder in the whole Android ecosystem. For
example, from the view of the market maintainer, the
compatibility issues that occur in apps can be detrimental
to the user base. If the problem has been solved, the
mobile app market can provide maintenance advice to
developers. Besides, the developer can reduce the test
efforts and fix the compatibility issue for targeted apps,
which is also beneficial for the user experience. The
potential value of solving this problem motivates our
work.

Existing researches deal with compatibility issues on
Android apps from several aspects. Some studies help
Android developers to prioritize major test device via user
reviews [17] or app usage data [22,33]. However, the devel-
opers still need to conduct extensive testing for each app
on selected test devices. Some studies discover that com-
patibility issues derive from multiple reasons [30], such as
device variations [17,22,31], complex user interfaces [11],
API evolutions [13,15,20], etc.

PIVOT [31] discovers APIs in the Android framework
which are caused by compatibility issues among differ-
ent devices. DiffDroid [11] leverages a differential test-
ing to automatically identify cross-platform inconsisten-
cies in the UI of Android apps. API-evolution-based ap-
proaches [13, 20] compute the additions and removals of
Android framework APIs between consecutive API levels
to find fragmentation-induced compatibility issues. Nev-
ertheless, these automated approaches can only help to
detect a specific type of compatibility issues.

Detecting compatibility-issue-proneness apps is a non-
trivial and difficult problem, as our goal is to find the
apps that are derived from multi reason. In this paper,

International Journal of Network Security(VDOI: 1816-3548-2021-00007) 2

Table 1: Android OS distribution

Version Codename API Distribution Release Date

4.0.3- Ice Cream
15 0.2% Dec, 2011

4.0.4 Sandwich
4.1.x

Jelly Bean
16 0.6% Jul, 2012

4.2.x 17 0.8% Nov, 2012
4.3 18 0.3% Jul, 2013
4.4 KitKat 19 4.0% Nov, 2013
5.0

Lollipop
21 1.8% Nov, 2014

5.1 22 7.4% Mar, 2015
6.0 Marshmallow 23 11.2% Oct, 2015
7.0

Nougat
24 7.5% Aug, 2016

7.1 25 5.4% Oct, 2016
8.0 Oreo 26 7.3% Aug, 2017
8.1 Oreo 27 14.0% Dec, 2017
9.0 Pie 28 31.3% Aug, 2018
10.0 10 29 8.2% Sept, 2019

we try to solve this problem by exploiting multi-modal
heterogeneous app data from different source.

The information presents conceptual characteristics of
apps, and thus is helpful in addressing our problem.

The challenge in our work is how to select and use
the multi modalities of data to measure the degree of
compatibility-issue-proneness. The previous researches
only leverage one specific type of data and detect compat-
ibility issue derived from a single cause. To solve the prob-
lem, we model the degree of compatibility-issue-proneness
by leveraging multi-modal heterogeneous data. Specifi-
cally, we select some potential modalities from different
source, such as app market, resource file and class files.
Then we adopt statistical approach to test whether sig-
nificant difference among the two samples in term of each
potential modality. In the end, we use the selected modal-
ities to identify the compatibility-issue-proneness apps.

Our work is evaluated on a large real-world dataset
consisting of 7,526 Android apps in Google Play. The
evaluation results show that our work is an effective ap-
proach to identify compatibility-issue-proneness apps.

This paper makes the following contributions:

� We provide an insight into the root causes of compat-
ibility issues in Android apps and present potential
modalities of app that may influence on the compat-
ibility issues. To the best of our knowledge, such
relations have not been empirically investigated yet.

� We study the problem of identify the modeling
compatibility-issue-proneness apps based on multi-
modal learning.

� We conduct the evaluation on our work among a real-
world dataset.

The structure of this paper is as follows. In Section 2,
we present the background of compatibility issues and
APK files on Android platform. We describe our modali-
ties extraction methodology and data processing steps in
Section 3. We present the experimental results of modal-
ities extraction and app identification in Section 4. We
discuss threats to validity in Section 5. Related work is

described in Section 6. We finally conclude and briefly
mention future directions in Section 7.

2 Background

2.1 Compatibility Issues

Compatibility issues come up when an app may not suit-
able for all devices that carry it. Specifically, an Android
app may present different outputs across devices, and do
harm to user experience [11, 33]. For example, an app
behaves as expected on a Huawei device, but its behavior
is inconsistent among others devices, even the app may
crash on some devices.

Compatibility issues can be small, for example a fea-
tures not working properly, but they can also be problem-
atic, such as the crash of the app or the system may come
up.

Compatibility issues can refer to interoperability be-
tween the device and the app. While Android devices
are released frequently, it is a challenge for developers to
deal with compatibility issues in apps. The developers
are unable to choose some device models among thou-
sands of devices to test compatibility issues. According
to OpenSignal [26], there are more than 682,000 Android
devices, covers 24,093 distinct device models and 1,294
device brands as early as 2015. OpenSignal also referred
that the number is more than doubled from the 11, 868
models based on a survey in 2013. Besides, the hardware
configuration composition and driver implementation of
these devices varies, which bring the heavy workload to
the test process.

Meanwhile, the Android OS carrying on the devices
varies as well. The OSs are evolving regularly for profits
and security needs, with 115 API updating per month
on average [25]. Even after releasing a new version, its
market could not notably increase.

Table 1 lists the information of the major Android OS
versions on April 10, 2020. Note that Android Oreo had
been released about 1 year, yet the market share only
reached 8.2 %.

2.2 APK Files

Android Package (APK) is a package file which is used
in installation and execution of an app on the Android
platform. Specifically, Android apps are written in Java
by leveraging Android Software Development Kit (SDK).
Then, all of app’s part is required to be compiled into
one package file with a ”.apk” extension. If the app is
required to be released the app on the application market,
the compilation process is necessary. With the APK file,
user can manually install the app on the Android device.

For the intellectual property right, the resource code of
apps is not available to the public. The primacy approach
to analyze the Android app is to transform Java bytecode
into intermediate representation for code analysis [3, 19].

International Journal of Network Security(VDOI: 1816-3548-2021-00007) 3

Compatibility-Issues-
Proneness

Applications

UI Complexity
The Dependence on Libraries

The Dependence on Hardwares
Etc.

Modality Selection Modality Extraction

Apps store page

Manifest file

Class file

Android
Applications

Scrapy

Apktool

Soot, Flowdroid

App Identification

Modality Analysis

Classifier Construction

Figure 1: Architecture of our work

3 Empirical Study Methodology

Figure 1 illustrates the workflow of our work. first, we se-
lect the potential modalities based on root causes of com-
patibility issues in apps. Then we extract these modalities
from three sources that are store page, manifest file and
class file. For the each modality, we measure its usabil-
ity in app identification, and finally build a classifier to
identify the compatibility-issues-proneness apps.

3.1 Modality Selection

First we choose 5 potential modalities and elaborate them
as follows:

The category. Indicates a group of apps having ap-
propriately similar characteristics on the application
market. It also presents the purpose of this type
of app for users to select. For example, the apps,
with the Entertainment category tagging, are often
used to fill your time and enjoy yourself. Developers
might pay varies attention to the compatibility issues
among different categories of apps. For example, the
developer might be more conscious about compati-
bility issues for financial apps than other apps. Till
now, there are 32 app categories in the Google Play
Store.

The size. Indicates the size of code in apps, which in-
cludes the size of the APK file and the LOC in the
decompiled Java files. The larger app in terms of
amounts of code may be harder to be maintained.
As a result, large size code in apps may introduce
more compatibility issues in apps.

The UI complexity. Indicates the amount of the user
interface in apps. Note that activity represents a
single-screen UI in apps. A representation of com-
patibility issues is the inconsistent output on the UIs.
Therefore, the app with more complex UIs may have
more compatibility issues. Here we use the amount
of activity to measure the UI complexity.

The dependence on libraries. Indicates the amount
of the dependence of the third-party libraries in apps.
The third-party libraries are extensively used in An-
droid to provide functionalities and ease human cost
in the development process. However, the depen-
dence on these libraries may bring compatibility is-
sues in apps.

The dependence on hardwares. Indicates the
amount of the dependence of hardwares in apps.
Some functions in apps rely on hardware compo-
sition. For example, A social app have to use the
camera to provide features with photos. However,
compatibility issues may occur with the problematic
implementations of hardware drivers.

3.2 Modality Extraction

In our work, the modalities are derived from three sources
as follows.

Google play store page. The description of the app on
the store page explicitly presents information (e.g.,
descriptions, category, install size, user reviews, in-
stalls and rates) to users. Therefore, the information
can be achieved by indirectly processing the google
play store page [24].

Manifest file. The AndroidManifest.xml file is located
in the root directory of project source set, which is
used to statically define some essential information
of the app.

For each component (e.g., activity, service) that
the developer creates, and each permission or hard-
ware feature that app requires, must be declared
in it [4]. For example, if an app needs to access
the camera, CAMERA permission is necessary to
be declared in its AndroidManifest.xml. Specifi-
cally, the manifest file would have <uses-permission
android:name=”android.permission.CAMERA”> in
it. Besides, to relieve compatibility issues, the
developer can declare the minimum API level re-
quired to run the app in AndroidManifest.xml. Note
that each line in the manifest file always begins
with an element (e.g.<activity>, <service>, <uses-
permission>), which is used to indicate the kind of
the information in the line.

Class files. Some modalities involving code complexity
required static code analysis. We first decompile the
Android apps from their DEX byte code into inter-
mediate Smali code by Apktool [2]. To capture the
dependency of libraries, we use package names in the
Smali code to identify third-party libraries. The same
process is also used by recent studies [5, 23].

International Journal of Network Security(VDOI: 1816-3548-2021-00007) 4

3.3 Dataset

The dataset is built on a server with an Intel Xeon E5-
2620V4 2.2G CPU and 128 GB physical memory. We
first randomly collect 30,000 apps in Androzoo [1]. Note
that these apps were derived from Google Play. We map
each app in our dataset with its Google Play store page if
exists and leverage the scrapy framework [27] to extract
the data. Then, we use Apktool [2] to decompile the
APK file and extract AndroidManifest.xml, and leverage
FlowDroid [3] to conduct code analysis. Specifically, we
remove some subject apps out of 30,000 apps for some
reasons below:

� Unavailable store page. Some apps maybe with-
drawn by developers or pulled off shelves by market
maintainers thus failed to be found in Google Play.

� Low installs. We filter apps if they have less than
100 installs to make sure the quality of the apps.

� Limitations of the code analysis tool. Some
apps are heavily obfuscated and unable to be used
in our evaluation. Besides, FlowDroid [3] runs out of
memory or exceeded the time limit or threw the Soot
exception in the process of doing static analysis on
some apps.

After the filtering process, we have 7,526 apps in the
dataset. We present a summary of these apps with the
descriptive statistics in Table 2.

In order to measure the degree of compatibility-issue-
proneness in term of each modality, we compute the statis-
tical differences among these apps whose amount of com-
patibility issues differs. Since no existing the ground truth
to distinguish the app has compatibility issues or not (it
is also our motivation), we conduct program analysis on
these apps and manually label each app is compatibility-
issues-proneness or not in term of the compatibility-
related APIs it contains. We leverage the statistical result
of CRA provided by the tool ICARUS [32] and Pivot [31].

Besides, note that third-party libraries account for a
large portion of the code in Android apps, program anal-
ysis on Android apps typically requires detecting or re-
moving third-party libraries first. We remove the codes
imported by third-party libraries via a library list. More
precisely, we first add the package names of the identi-
fied libraries into a list and remove such packages ac-
cording to the list in decompiled apps. The test result
shows that about over 95 % apps in our dataset contain
the third party libraries such as com/google/ads, com/-
facebook and com/umeng. By program analysis, we sort
each app into three samples in term of the amount of
compatibility-related APIs it contains, and then consider
the bottom 10% apps as the high-quality apps and top
10% apps as compatibility-issues-proneness apps. Finally,
we get 139 high-quality apps and 131 compatibility-issues-
proneness apps for the study.

Table 2: Summary of the Apps Used in Our Dataset

Category Apps(%) KLOC
Arcade 327 (4.3%) 623-8K

Books and reference 416 (5.5%) 92-18K
Brain 357 (4.7%) 1K-32K

Business 257 (3.4%) 1K-18K
Casual 426 (5.7%) 372-12K
Comics 14 (0.2%) 1K-2K

Communication 610 (8.1%) 297-12K
Education 307 (4.1%) 1K-8K

Entertainment 825 (11.0%) 493-8K
Finance 142 (1.9%) 726-14K
Games 294 (3.9%) 79-146K

Health and fitness 21 (0.3%) 1K-28K
Libraries and demo 124 (1.6%) 182-7K

Lifestyle 214 (2.8%) 2K-7K
Media and video Cards 610 (8.1%) 1K-23K

Medial 12 (0.2%) 2K-8K
Music and audio 119 (1.6%) 1K-11K

News and magazines 163 (2.2%) 615-17K
Personalization 491 (6.5%) 393-8K
Photography 316 (4.2%) 194-87K
Productivity 241 (3.2%) 782-39K

Racing 121 (1.6%) 4K-38K
Shopping 73 (0.1%) 1K-5K
Social 92 (1.2%) 2K-13K
Sports 243 (3.2%) 870-43K
Tools 619 (8.2%) 169-38K

Transportation 10 (0.1%) 3K-13K
Travel and Local 71 (0.9%) 3K-8K

Weather 11 (0.1%) 708-7K
Total 7526 109-146K

4 Study Results

This section presents and discusses the results of our se-
lected modalities in Section 3.1. First, we leverage the
statistical methods to measure the association between
each modality and compatibility issues in apps. Then we
use these modalities to identify the compatibility-issues-
proneness apps.

4.1 Evaluation on Modalities

Approach. Here, we measure each selected modali-
ties among two group of samples. Specifically, we
first analyze the statistical significance of the dif-
ference between the two samples that respectively
contain 139 high-quality apps and 131 compatibility-
issues-proneness apps by applying non-parametric
Mann-Whitney-Wilcoxon (MWW) test [10] at p-
value =0.01 [8]. We also used Cliff’s Delta statistic
that is a nonparametric effect size to measure effect
size of the difference between the two groups [12].

We interpret the effect size values as small for 0.147
<d <0.33, medium for 0.33 <d <0.474, and large for
d >0.474 with the guidelines in previous work [14,21,
29].

Results. We find that the two groups have statistically
significant differences in term of selected modalities
except for size and category.

In terms of size and category, we found no signifi-

International Journal of Network Security(VDOI: 1816-3548-2021-00007) 5

cant difference with d of 0.116 and 0.071. For UI
complexity, the effect size is medium with d of 0.372.

In terms of dependence of libraries and hardwares,
the results show statistical significant difference, with
p-value<of 0.0001 and the large effect size (d=0.682,
0.517). We discuss each modality one by one as fol-
lows.

UI complexity. Compared with high-quality apps,
compatibility-issues-proneness apps tend to have
more complexity UI. In fact, a symptom of compat-
ibility issues is the inconsistencies in the UI of An-
droid apps among various devices. Users have direct
interaction with the UIs of the apps thus the inconsis-
tent behaviors among UIs are easily noticed. When
an app has more UIs to present to the user, it is more
difficult to maintain app compatibility. For example,
an app may not have specific UI declarations for di-
verse density screens.

Besides we find the APIs which directly involving
what is displayed on the device screen are prone
to compatibility issues. Such as the class an-
droid.widget.ZoomButtonsController, which is used
to handle showing and hiding the zoom controls and
positioning it relative to an owner view in UI. How-
ever, the class was deprecated in API level 26 and
may introduce compatibility issues on devices carry-
ing the new OS. If the app contains more UI, the
developers may unconsciously use these APIs thus
bring compatibility issues.

Dependence on libraries. Compared with high-
quality apps, compatibility-issues-proneness apps
tend to have more dependence on libraries. Although
the usage of libraries eases the development process,
the third-party code of the libraries introduce
more compatibility issues. For some libraries, the
potential compatibility it may introduce may not
explicitly indicate in its documentation.

To elaborate our results, we present a code segment
in keepass2android [16], a popular Android project
with 11,410 stars on GitHub, as shown in Listing 1.
In this example, the app leverages a library to create
a cipher object for encryption and decryption. Be-
fore invoking the library, the developer probes the
device model, and verifies whether it is Acer Iconia
A500 (Line 2) and records the result into a boolean
value. The boolean value is then used in the condi-
tional statement (Line 7) to control the callsite of
API Cipher.getInstance(). Notably, the developer
writes “The Acer Iconia A500 is special and seems
to always crash in the native crypto libraries” as
an annotation (not showing on the code example for
brevity) below this line, which implies that the us-
age of the API provide by the library may cause the
compatibility issue.

1 public stat ic boolean dev i c eB l a c k l i s t e d () {
2 b l a c k l i s t e d = Build .MODEL. equa l s (”A500”) ;

3 return b l a c k l i s t e d ;
4 }
5
6 public stat ic Cipher ge t In s tance () {
7 i f (! d e v i c eB l a c k l i s t e d ())
8 return Cipher . g e t In s tance () ;
9 }

Listing 1: A code segment in keepass2android

As the example shows, the dependence on libraries
may cause serious compatibility issue. Therefore the
documents of third-party libraries are required to be
carefully read. However, most libraries either lack a
full documentation or do not indicate its potential
compatibility issue in the documents.

Dependence on hardwares. Compared with high-
quality apps, compatibility-issues-proneness apps
tend to have more dependence on hardwares. The
more hardwares the app used, the greater chance for
compatibility issues arise. The function of hardwares
relies on low-level drivers, whose implementations
can make inconsistent behaviors among different de-
vices. Besides, the diversity of hardware composition
can easily lead to compatibility issues.

For example, the usage of SD card may introduce the com-
patibility issues. Some devices (e.g., Samsung Galaxy S2,
HTC Evo 4G) do not use the external storage convention
/mnt/sdcard/. Besides, there exists other devices with
no SD card and multiple SD cards on the market. To
deal with the issues, developers have to make extra effort
among the various devices. Specifically, the developers
may hardcode the SD card path for some targeted de-
vices. However, the issues would still occur since the new
devices continue to emerge.

4.2 Evaluation on Identification

Approach. We leverage the 3 modalities to identify the
compatibility-issues-proneness apps. We use the la-
beled apps both as training and test data in a ten-fold
cross-validation [18], which is a standard approach
for evaluating the approach. Specifically, we parti-
tion the apps in 10 subsets, and we use 9 subsets for
training the model and 1 for testing. We run this
for 10 times, each time we use a different subset for
testing. Here we adopt the support vector machine
(SVM) as the classifier.

Metrics. We consider two evaluation metrics, the pre-
cision and recall. Precision means the fraction of
compatibility-issues-proneness apps correctly iden-
tified as compatibility-issues-proneness apps among
those labeled. Recall means the fraction of
compatibility-issues-proneness apps correctly iden-
tified as compatibility-issues-proneness apps among
those reported by our approach.

Given the ground truth and the detection results,
there are four possible outcomes: True positive(TP),

International Journal of Network Security(VDOI: 1816-3548-2021-00007) 6

Table 3: Effectiveness of our approach to identify
compatibility-issues-proneness apps

Modalities Recall(%) Precision(%)
The UI Complexity

72.1 74.1
(UC)

The Dependence on Libraries
78.2 70.1

(DL)
The Dependence on Hardwares

75.1 72.2
(DH)

UC & DH 75.5 76.3
UC & DL 85.2 80.5
DL & DH 82.3 76.4

Total
84.3 80.4

(UC & DL & DH)

true negative (TN), false positive (FP) and false neg-
ative (FN). TP means that an app is compatibility-
issues-proneness with respect to the ground truth
and it is identified by our approach. TN means
that an app is compatibility-issues-proneness with re-
spect to the ground truth and our approach does
not identify it correctly. FP means that an app
is not compatibility-issues-proneness with respect to
the ground truth but our approach identifies it by
mistake. FN means that an app is not compatibility-
issues-proneness with respect to the ground truth but
our approach truly does not identify it. Finally, the
precision and recall are computed by the following
formulas:

Precison =
TP

TP + FP

Recall =
TP

TP + FN

Finally, we report the average precision and recall in
Table 3.

Results. Results show that our work achieves both
higher recall and precision. The precisions and the
recalls of the analysis results for apps from different
categories are listed in Table 3 (the last two columns).
The first column shows the modalities used. The
second and the third column list the recall and preci-
sion. We also present the experimental results based
on each single modality and the combination of dif-
ferent modalities. Note that each modality is useful
to improve both the precision and recall of the iden-
tification results.

We also analyze the misidentified samples. Specifically,
we invite three Android experts to test the apps that
are misidentified by our approach. We find some apps
that are false positives have compatibility issues in the
practical scenario. However, due to the limitation of the
compatibility-related APIs dataset, we label them as neg-
ative samples. To improve the recall and precision of iden-
tification, we will label the app with consideration for test
results from Android devices in the future.

5 Threats to Validity

In this section, we present and discusses threats to validity
as follows.

Construct validity. Is related to whether our study re-
flects real-world situations. A possible threat to the
validity of our study could be due to the limitation of
the dataset. In our study, we have tried our best to
make dataset general and representative. Given the
fact that the Android platform and app ecosystems
are quickly evolving, the investigated apps in dataset
over five years, which make sure our experimental
results may generalize to most apps.

Internal validity. Is related to uncontrolled aspects
that may affect the experimental results. Our results
are based on the static analysis that may be subject
to issue from analysis tool Apktool and Flowdroid.
We may consciously or unconsciously favor the re-
sults it presents. Another threat is related to the
manual inspection in misidentified samples. We in-
deed understand that such manual inspection can be
error-prone, so this activity has been done with spe-
cial attention, double-checking and support of the
second and third experience developers. We believe
that the threat to construct validity is minimal.

External validity. Is related to the possibility to gener-
alize our results. We try to study several apps from
different categories. Note that a threat to external
validity is that we focus on the free apps in Google
Play rather than the paid apps whose APK files are
difficult to collect. To be fully conclusive, we will con-
struct our study with paid apps in the future. The
apps on platforms other than Android are outside the
scope of this paper.

6 Related Work

Some of the existing researches are confined to help de-
velopers to find compatibility issue in development test.
Lu et al. [22] mined large-scale usage data from Wan-
doujia, and proposed an approach to prioritizing Android
device models for individual apps to help developers to
identify compatibility issues, based on mining large-scale
usage data from Wandoujia. Khalid et al. [17] also helped
game app developers deal with a similar problem. They
picked the devices that have the most impact on app rat-
ings by studying the reviews of game apps. Zhang et
al. [33] proposed a systematic and cost-effective mobile
compatibility test method for selecting mobile devices
and their diverse platforms and configurations. Mattia et
al. [11] automatically identify cross-platform inconsisten-
cies in the UI of Android apps. These proposed schemes
have effectively helped developers identify whether com-
patibility issues are occurring in the test process, but we
note that it is challenging for developers to deal with com-
patibility issue in code-level. Since that existing work dis-

International Journal of Network Security(VDOI: 1816-3548-2021-00007) 7

covered that developers are unable to resolve nearly 40%
reported crashes [9], which is a possible consequence of
the compatibility issue [17,20,30,34].

Besides, some studies are proposed to understand the
compatibility issue at code-level in Android apps. Wei et
al. [30] conducted the first empirical study of compatibil-
ity issues caused by Android fragmentation in real-world
Android apps at the source code level. Specifically, their
work manually studied root causes, symptoms and fix-
ing strategies of compatibility issues in open-source apps.
Cai et al. [6] conducted a large-scale study of app com-
patibility issues in Android, concerning the occurrences of
these issues at installation time and runtime. Specifically,
their work gathered the app trace as well as the system log
on the apps’ executions and installations, and then ana-
lyzed these logs to recognize the execution and installation
as a success or failure with related reasons. FicFinder [30]
is used to automatically detect compatibility issues in An-
droid apps, but its performance completely relies on the
investigation into open-source apps, which requires the
labor-intensive process and may lead to a high rate of
false negatives. CiD [20] generalizes FicFinder to more
compatibility issues, with mining of Android framework
versions and modeling the lifecycle of all API methods.
PIVOT [31] extracts and prioritizes API-device correla-
tions from a given corpus of Android apps, and consider
APIs in such correlations are compatibility issues derived
from the device causes. However, they cannot provide
deeper insights to help the developers to relieve the hu-
man effort in the development process. one can possibly
assume that some modalities in apps may jeopardize its
compatibility, to the best of our knowledge such relations
have not been empirically investigated yet. Our work shed
light on the relationship between the compatibility issues
and some modalities of Android apps, which is a comple-
ment to recent studies.

7 Conclusion

We have contributed to this paper with a novel approach
to identify compatibility-issues-proneness apps. We also
present some modalities of apps that are related to com-
patibility issues in Android apps. To this goal, our ap-
proach starts with the analysis of given apps and extracts
the potential modalities from Google Play and APK files.
We then use a statistical approach to measure the associa-
tion and leverage a classifier to identify the compatibility-
issues-proneness apps. The evaluation on a large real-
world dataset shows that the accuracy and validity of
these modalities.

Acknowledgments

We thank the anonymous reviewers for their valuable
comments. The research is supported by the Na-
tional Key R&D Program of China 2018YFB2100300,

2018YFB0803400, National Natural Science Founda-
tion of China under Grant No.61972369, No.61572453,
No.61520106007, No.61572454, and the Fundamen-
tal Research Funds for the Central Universities, No.
WK2150110009.

References

[1] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon,
“Androzoo: Collecting millions of android apps
for the research community,” in IEEE/ACM 13th
Working Conference on Mining Software Reposito-
ries (MSR’16), pp. 468–471, 2016.

[2] Apktool, A Tool for Reverse Engineering Android
apk Files, July 6, 2021. (https://ibotpeaches.
github.io/Apktool/)

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bar-
tel, J. Klein, Y. L. Traon, D. Octeau, and P. Mc-
Daniel, “FlowDroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for
android apps,” ACM SIGPLAN Notices, vol. 49,
pp. 259–269. ACM New York, NY, USA, 2014.

[4] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie,
“PScout: Analyzing the android permission spec-
ification,” in Proceedings of ACM Conference on
Computer and Communications Security, pp. 217–
228, 2012.

[5] M. Backes, S. Bugiel, and E. Derr, “Reliable third-
party library detection in android and its security
applications,” in Proceedings of ACM SIGSAC Con-
ference on Computer and Communications Security,
pp. 356–367, 2016.

[6] H. Cai, Z. Zhang, L. Li, and X. Fu, “A large-scale
study of application incompatibilities in android,”
in Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis,
pp. 216–227, 2019.

[7] J. Callaham ,Android Now Running on
Over 2.5 Billion Active Hardware Devices,
2020. (https://www.androidauthority.com/
android-2-5-billion-devices-983534/)

[8] W. J. Conover, Practical Nonparametric Statis-
tics, vol. 350, 1998. (http://140.117.153.69/
ctdr/files/857_1734.pdf)

[9] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G.
Pu, and Z. Su, “Large-scale analysis of framework-
specific exceptions in android apps,” in IEEE/ACM
40th International Conference on Software Engineer-
ing (ICSE’18), pp. 408–419, 2018.

[10] M. P. Fay and M. A. Proschan, Wilcoxon-Mann-
Whitney or T-test? On Assumptions for Hypothesis
Tests and Multiple Interpretations of Decision Rules,
vol. 4, pp. 1. , 2010.

[11] M. Fazzini and A. Orso, “Automated Cross-Platform
Inconsistency Detection for Mobile Apps,” vol. 4,
pp. 308–318, 2017.

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://www.androidauthority.com/android-2-5-billion-devices-983534/
https://www.androidauthority.com/android-2-5-billion-devices-983534/
http://140.117.153.69/ctdr/files/857_1734.pdf
http://140.117.153.69/ctdr/files/857_1734.pdf

International Journal of Network Security(VDOI: 1816-3548-2021-00007) 8

[12] R. J. Grissom and J. J. Kim, Effect Sizes for Re-
search: A Broad Practical Approach, 2005. (https:
//psycnet.apa.org/record/2005-04135-000)

[13] D. He, L. Li, L. Wang, H. Zheng, G. Li, and
J. Xue, “Understanding and detecting evolution-
induced compatibility issues in android apps,” in
Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering,
pp. 167–177, 2018.

[14] A. Hora, M. T. Valente, R. Robbes, and N. An-
quetil, “When should internal interfaces be promoted
to public?,” in Proceedings of the 24th ACM SIG-
SOFT International Symposium on Foundations of
Software Engineering, pp. 278–289, 2016.

[15] H. Huang, L. Wei, Y. Liu, and S. C. Cheung, “Under-
standing and detecting callback compatibility issues
for android applications,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineering, pp. 532–542, 2018.

[16] keepass2android, Password Manager App for
Android, July 6, 2021. (https://github.com/
PhilippC/keepass2android/)

[17] H. Khalid, M. Nagappan, E. Shihab, and A. E. Has-
san, “Prioritizing the devices to test your app on: A
case study of android game apps,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pp. 610–
620, 2014.

[18] R. Kohavi, et al., “A study of cross-validation and
bootstrap for accuracy estimation and model selec-
tion,” in Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI’95),
vol. 14, pp. 1137–1145, 1995.

[19] P. Lam, E. Bodden, O. Lhoták, and L. Hen-
dren, “The soot framework for java program anal-
ysis: a retrospective,” in Cetus Users and Com-
piler Infastructure Workshop (CETUS’11), vol. 15,
pp. 35, 2011.

[20] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “CiD:
Automating the detection of api-related compatibil-
ity issues in android apps,” in Proceedings of the 27th
ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pp. 153–163, 2018.

[21] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
M. D. Penta, R. Oliveto, and D. Poshyvanyk, “API
change and fault proneness: A threat to the suc-
cess of android apps,” in Proceedings of the 9th Joint
Meeting on Foundations of Software Engineering,
pp. 477–487, 2013.

[22] X. Lu, X. Liu, H. Li, T. Xie, Q. Mei, D. Hao, G.
Huang, and F. Feng, “Prada: Prioritizing android
devices for apps by mining large-scale usage data,” in
IEEE/ACM 38th International Conference on Soft-
ware Engineering (ICSE’16), pp. 3–13, 2016.

[23] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar:
Fast and accurate detection of third-party libraries
in android apps,” in Proceedings of the 38th Interna-
tional Conference on Software Engineering Compan-
ion, pp. 653–656, 2016.

[24] W. Martin, F. Sarro, and M. Harman, “Causal im-
pact analysis for app releases in google play,” in Pro-
ceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pp. 435–446, 2016.

[25] T. McDonnell, B. Ray, and M. Kim, “An empirical
study of API stability and adoption in the android
ecosystem,” in IEEE International Conference on
Software Maintenance (ICSM’13), pp. 70–79, 2013.

[26] Opensignal, Android Fragmentation Visualized,
Aug. 2015. (https://www.opensignal.com/sites/
opensignal-com/files/data/reports/global/

data-2015-08/2015_08_fragmentation_report.

pdf)

[27] Scrapy, An Open Source and Collaborative Frame-
work for Extracting the Data, July 6, 2021. (https:
//scrapy.org/)

[28] Statcounter, Mobile Operating System Market Share
Worldwide, 2020. (https://gs.statcounter.com/
os-market-share/mobile/worldwide/)

[29] I. Steinmacher, G. Pinto, I. S. Wiese, and
M. A. Gerosa, “Almost there: A study on quasi-
contributors in open-source software projects,” in
IEEE/ACM 40th International Conference on Soft-
ware Engineering (ICSE’18), pp. 256–266, 2018.

[30] L. Wei, Y. Liu, and S. C. Cheung, “Taming an-
droid fragmentation: Characterizing and detecting
compatibility issues for android apps,” in Proceedings
of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pp. 226–237, 2016.

[31] L. Wei, Y. Liu, and S. C. Cheung, “Pivot: Learn-
ing API-device correlations to facilitate android
compatibility issue detection,” in IEEE/ACM 41st
International Conference on Software Engineering
(ICSE’19), pp. 878–888, 2019.

[32] C. Xu, Y. Xiong, W. Huang, Z. Meng, F. Miao, C.
Su, and G. Mo, “Identifying compatibility-related
apis by exploring biased distribution in android
apps,” in IEEE/ACM 42nd International Conference
on Software Engineering: Companion Proceedings,
pp. 280–281, 2020.

[33] T. Zhang, J. Gao, J. Cheng, and T. Uehara, “Com-
patibility Testing Service for mobile applications,” in
IEEE Symposium on Service-Oriented System Engi-
neering, pp. 179–186, 2015.

[34] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang,
“The peril of fragmentation: Security hazards in an-
droid device driver customizations,” in IEEE Sym-
posium on Security and Privacy, pp. 409–423, 2014.

Biography

Chen Xu received the B.S. degree in computer science
from Anhui Agricultural University in 2014. He is
currently working towards the Ph.D. degree at the
Department of Computer Science and Technology, Uni-
versity of Science and Technology of China. His current

https://psycnet.apa.org/record/2005-04135-000
https://psycnet.apa.org/record/2005-04135-000
 https://github.com/PhilippC/keepass2android/
 https://github.com/PhilippC/keepass2android/
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
 https://scrapy.org/
 https://scrapy.org/
https://gs.statcounter.com/os-market-share/mobile/worldwide/
https://gs.statcounter.com/os-market-share/mobile/worldwide/

International Journal of Network Security(VDOI: 1816-3548-2021-00007) 9

research interests include information security and soft-
ware engineering. (Email: kakyo82@mail.ustc.edu.cn)

Caimei Wang received the Ph.D degree in computer
science from University of Science and Technology of
China in 2018. She is an associate professor in School
of Artificial Intelligence and Big Data, Hefei University.
Her main research interests include computer network,
trusted computing and information security. (Email:
wangcmo@mail.ustc.edu.cn)

Wenchao Huang received B.S. and Ph.D. degrees
from University of Science and Technology of China in
2006 and 2011 respectively. He is an associate professor
currently with Department of Computer Science and
Technology, University of Science and Technology of
China. His current research interests include mobile
computing, information security, trusted computing, and
formal methods. (Email: huangwc@ustc.edu.cn)

Yan Xiong received the B.S., M.S., and Ph.D degrees
from University of Science and Technology of China in
1983, 1986 and 1990 respectively. He is a professor in
School of Computer Science and Technology, University
of Science and Technology of China. His main research
interests include distributed processing, mobile comput-
ing, computer network and information security. (Email:
yxiong@ustc.edu.cn)

Zhaoyi Meng received the B.S. degree in information
security from University of Electronic Science and Tech-
nology of China in 2014, and the Ph.D. degree in com-
puter science and technology from University of Sci-
ence and Technology of China. He is currently a Post-
Doctoral Researcher with the Department of Computer
Science and Technology, University of Science and Tech-
nology of China. His current research interests in-
clude Android security and software formal verification.
(Email:mzy516@ustc.edu.cn)

Fuyou Miao received his Ph.D of computer science from
University of Science and Technology of China in 2005.
He is an associate professor in the School of Computer Sci-
ence and Technology, University of Science and Technol-
ogy of China. His research interests include information
security, information coding key management in WSN,
and network security. (Email:mfy@ustc.edu.cn)

	Introduction
	Background
	Compatibility Issues
	APK Files

	Empirical Study Methodology
	Modality Selection
	Modality Extraction
	Dataset

	Study Results
	Evaluation on Modalities
	Evaluation on Identification

	Threats to Validity
	Related Work
	Conclusion
	REFERENCES

