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Abstract

The 0/1-encoding is a new encoding method, mainly used
to compare the numerical size of two positive integers
without giving the specific integers. Its main idea is to
reduce the problem of comparing two integers to the prob-
lem to find whether two sets have intersections. In this
paper, we first analyze and discuss the inherent properties
of the 0/1-encoding method by three theorems. Then, if
the 0/1-encoding sets are used directly, it will make the
adversary get 0/1-encoding results easily, and the adver-
sary has a greater probability of recovering the positive
integers being compared. Finally, we theoretically prove
the above findings and depict the degree of privacy leakage
compared to positive integers when the adversary obtains
different 0/1-encoding results.

Keywords: 0/1-Encoding Method; Greater Than (GT)
Problem; Millionaire Problem; Privacy Leakage; Set In-
tersection Problem

1 Introduction

The Millionaire problem is a well-known problem in cryp-
tography [18], which is similar to the greater than (GT)
problem [10], namely, to determine which of two integers
is larger without leaking any information about integer
values being compared. Since Yao introduced this prob-
lem and gave a solution, many scheme [1,6,8,10,15] have
been put forward to solve this problem using different
methods. In particular, Lin et al. [10] proposed a spe-
cial encoding method, namely 0/1-encoding, which trans-
formed the greater than problem into the set intersection
problem. Because of the simplicity of the 0/1-encoding
method, more and more researchers pay attention to it
and it is widely applied in many fields.

References [2,3,5,7,11,12,14,16,19,20] introduced the
0/1-encoding into their schemes to solve problems in dif-
ferent fields. The schemes [7, 11, 14] introduced the 0/1-

encoding into the time-limited signature. Firstly, the key
expiration time T1 was embedded into the user’s private
key, and then T1 and the signature time T2 were encoded
according to the 1-encoding and 0-encoding respectively.
If there was a common element in these two encoding sets,
then the signature was valid and can be verified. The
specific problems in [2, 3, 5, 12, 16, 19, 20] were also solved
by the 0/1-encoding method. For example, Shishido et
al. [16] proposed a test scheme to judge whether an inte-
ger d belongs to a range of [a,b]. This scheme first encoded
the left and right endpoints a and b with 1-encoding [4]
and 0-encoding, respectively, and then detected whether
the prefix string set [16] of integer d has common ele-
ments with the encoding sets of two endpoints. If they
had a common element, then d can be judged to be out
of the range [a, b].

In this paper, we find that if the 0/1-encoding sets
are directly used without any processing, it may lead
to the privacy leakage of the integer values being com-
pared, which obviously contradicts the original intention
of the 0/1-encoding method obviously. For example, some
attribute-based encryption schemes [13,17] used the 0/1-
encoding method to compare whether the numerical at-
tributes (height, weight, or age) of the data owners and
the data users are matched or not. These numerical at-
tributes often are the personal privacy and the user does
not want to expose their privacy, so they make indirect
comparison using the 0/1-encoding method. If all 0/1-
encoding results are stored in the cloud server, and any
entity who obtains the encoding results can recover the ex-
act values of these numerical attributes according to the
original encoding sets, which is contrary to the original
designed intention of the 0/1-encoding method. There-
fore, this paper analyzes and discusses the properties and
defects of the 0/1-encoding method, and points out the
precautions for its use. Here, we summarize the contribu-
tions of this paper as follows:

� We analyze and discuss the inherent properties of the
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0/1-encoding method by three theorems, and further
extend the 0/1-encoding method to indirectly judge
the relations (” > ”, ” ≤ ” and ” = ”) of two positive
integers.

� We find that if the 0/1-encoding is used directly, it
will make the adversary get 0/1-encoding results eas-
ily and the adversary has a greater probability to re-
cover the positive integers being compared, and prove
the findings by a theorem.

� We depict the degree of privacy leakage of the com-
pared positive integers when the adversary obtains
different 0/1-encoding results by two theorems and
some examples.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews some basic knowledge which might be used.
Section 3 gives three theorems to introduce properties of
the 0/1-encoding method. Section 4 describes the corre-
lation between the exposure of the 0/1 encoding sets and
the privacy leakage of the compared integers via three the-
orems and specific examples. Section 5 gives some sugges-
tions for 0/1-encoding to protect the privacy of integers
being compared.

2 Preliminaries

Definition 1. (see [10]) Let x = xnxn−1...x1 ∈ GFn
2 be

a n-bit binary string, then the 0/1-encoding set of x are
defined as sets S0

x and S1
x, which are shown below:

S0
x = {xnxn−1...xi+11|xi = 0, 1 ≤ i ≤ n} ,

S1
x = {xnxn−1...xi|xi = 1, 1 ≤ i ≤ n} .

Both S0
x and S1

x have at most n elements.

To compare which of two integers x and y is greater by
the 0/1-encoding method, we first encode them as binary
strings of the same length (and if the length is not equal,
the top should be added with 0 to the same length), then
determine whether there is a non-empty intersection be-
tween the 1-encoding set S1

x of x and the 0-encoding set
S0
y of y (or between the 0-encoding set S0

x of x and the 1-
encoding set S1

y of y). If S1
x

⋂
S0
y ̸= ∅, we can determine

that x > y. Otherwise, x ≤ y. We illustrate it with the
following example.

Example 1. Let x = 45, y = 40 and their binary
strings be 101101 and 101000 respectively. Then the 0/1-
encoding sets of x and y are

S0
x = {10111, 11} , S1

x = {101101, 1011, 101, 1} .
S0
y = {101001, 10101, 1011, 11} , S1

x = {101, 1} .

Since S1
x

⋂
S0
y = {1011} ≠ ∅, we can infer that x > y.

Of course, we also can get y ≤ x by S0
x

⋂
S1
y = ∅. By the

0/1-encoding, we can get a conclusion that x is greater
than y.

3 Main Properties

In this section, three theorems are given to illustrate how
to determine the relations (” > ”, ” ≤ ” and ” = ”) of
two positive integers by the 0/1-encoding method, which
indicates that the 0/1-encoding can indirectly judge the
above relations (” > ”, ” ≤ ” and ” = ”) of two inte-
gers. First, we give some notations and their meanings in
Table 1 that might be used later.

Theorem 1. Let x and y are any two positive integers.
Then x > y if and only if S1

x and S0
y have only a common

element.

Proof. Let x = xnxn−1...x1 ∈ GFn
2 , y = ynyn−1...y1 ∈

GFn
2 .

Prove sufficiency. Suppose there is an element t =
tntn−1...ti ∈ S1

x

⋂
S0
y with ti = 1, i ∈ [1, n]. Since

t ∈ S1
x, there must exsit xnxn−1...xi = tntn−1...ti.

And due to t ∈ S0
y , we can get that ynyn−1...yi =

tntn−1...t̄i, namely{
xj = yj , j ∈ [i+ 1, n]

xi = 0, yi = 0, i = j
.

Therefore, we can infer that x > y.

Prove necessity. We first prove that S1
x and S0

y have a
common element, that is, prove the existence of the
common element. If x > y, then there must be an
integer i ∈ [1, n], such that{

xj = yj , j ∈ [i+ 1, n]
xi = 0, yi = 0, i = j

(1)

where i must be the first value of i that sat-
isfies the above condition (1). From the above
conditions (1), we can know xnxn−1...xi+1xi =
ynyn−1...yi+11. According to the 1-encoding set S1

x

of x and the 0-encoding set S0
y of y, it is easy to

get xnxn−1...xi+1xi ∈ S1
x and ynyn−1...yi+11 ∈ S0

y .
Hence, xnxn−1...xi+1xi = ynyn−1...yi+11 ∈ S1

x

⋂
S0
y ,

namely, S1
x and S0

y have a common element.

Next, we will prove that S1
x and S0

y have only a com-
mon element, i.e., the uniqueness of the common el-
ement. Assume there is another common element
t ∈ S1

x

⋂
S0
y , then t must be represented as follows:

t = xn...xi+1xixi−1...xj+1xj (or
yn...yi+11yi−1...yj+11).

Obviously, the corresponding values of the above
two binary strings are equal, namely, xk = yk, k ∈
[j, n], where yi = yj = 1. Since t ∈ S0

y ,
there be ynyn−1...yj = ynyn−1...yi+11yi−1...yj+10,
and then ynyn−1...yi+1yi = ynyn−1...yi+11. And
due to ynyn−1...yi+11 ∈ S0

y , we can infer that
ynyn−1...yi+1yi = ynyn−1...yi+10. This is a contra-
diction obviously. Therefore, S1

x and S0
y have only a

common element.
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Table 1: Notations

notations meanings notations meanings
[1, n] all integers between 1 and n GF2 Galois field
t̄ complement of t in GF2 |S| the cardinality of the set S

Cm
n the combinations number n!

m!(n−m)! || cascading symbol of binary strings

Remark 1. From the uniqueness proof process of The-
orem 1, we know that their encoding sets S1

x and
S0
y (or S0

x and S1
y) do not have two or more common

elements for any two positive integers x and y. There-
fore, the following S1

x

⋂
S0
y ̸= ∅ (or S0

x

⋂
S1
y ̸= ∅)

indicates that S1
x and S0

y (or S0
x and S1

y) have only a
common element.

Theorem 2. Let x and y be any two positive integers.
Then x ≤ y ⇔ S1

x

⋂
S0
y = ∅.

Proof. We use apagoge to prove it. Given S1
x

⋂
S0
y = ∅,

if x > y, then S1
x and S0

y have only a common element.
This is contradictory with S1

x

⋂
S0
y = ∅, so x ≤ y. On

the contrary, let x ≤ y, if S1
x

⋂
S0
y ̸= ∅, namely, S1

x and
S0
y have only a common element, then x > y according

to Theorem 1. It contradicts with x ≤ y, so S1
x

⋂
S0
y =

∅.

Theorem 3. Let x and y be any two positive integers.
The following three conditions are equivalent:

1) x = y;

2) S1
x

⋂
S0
y = ∅ and S0

x

⋂
S1
y = ∅;

3) S1
x

⋂
S0
y = ∅ and S1

x

⋂
S0
y−1 ̸= ∅.

Proof.

(1) ⇒ (2) x = y ⇔ x ≤ y and y ≤ x. According to The-
orem 2, we can get that

x ≤ y ⇔ S1
x

⋂
S0
y = ∅, y ≤ x ⇔ S1

y

⋂
S0
x = ∅.

Therefore, S1
x

⋂
S0
y = ∅ and S0

x

⋂
S1
y = ∅.

(2) ⇒ (3). We just need to prove S1
x

⋂
S0
y−1 ̸= ∅. From

Theorem 2, we know that

S0
x

⋂
S1
y = ∅ ⇒ y ≤ x.

Since y − 1 < y, we can get y − 1 < x. It is known
by Theorem 1 that

x > y − 1 ⇔ S1
x and S0

y−1 have only a common
element.

Therefore, S1
x

⋂
S0
y−1 ̸= ∅.

(3) ⇒ (1). Suppose that S1
x

⋂
S0
y = ∅ and S1

x

⋂
S0
y−1 ̸=

∅. According to Theorem 1 and Theorem 2

S1
x

⋂
S0
y = ∅ ⇒ x ≤ y, S1

x

⋂
S0
y−1 ̸= ∅ ⇒ x > y − 1.

That is, y−1 < x ≤ y. And due to x be a positive integer,
then x = y.

4 Correlation between the 0/1-
Encoding Sets and the Privacy
of Compared Integer

If the 0/1-encoding sets are not processed and directly
submitted to the third party or both parties exchange
the 0/1-encoding sets to find whether there is a non-empty
intersection, which may lead to the privacy leakage of the
integer values being compared. This contradicts with the
original designed intention of this encoding method. The
following will illustrate this fact via three theorems and
concrete examples.

Theorem 4. If the length(n-bit) of binary string of a
positive integer x is known, and

|S1
x| = n1 ( or |S0

x| = n2),

then we have the probability of 1
C

n1
n

(or 1

C
n−n2
n

) to recover

x, where n = n1 + n2.

Proof. Let x = tntn−1...t1 ∈ GFn
2 . If |S1

x| = n1, then
there are n1 values of ti (i ∈ [1, n]) which are equal to
1. And there are totally Cn1

n positions that locate ti = 1,
thus there is the probability of 1

C
n1
n

to get x. Similarly,

if we know |S0
x| = n2, we can also prove that there is the

probability of 1

C
n−n2
n

to recover x value.

Example 2. Suppose that an adversary knows the num-
ber of elements in a 0/1-encoding set, namely, |S1

x| =
3 (or |S0

x| = 3), then the adversary has the probability of
1
C3

6
= 1

20 to get x. See Table 2.

Obviously, there are 20 possible x values. How-
ever, since x is usually associated with a specific at-
tribute (height, weight, or age), the adversary can further
determine x based on other information. For example, x
represents the age of the breast cancer patient in the ex-
ample, then the range of x can be determined to [40,56],
and the possible values of x are 41, 42, 44, 49, 50, 52, 56.
Therefore, the adversary has the probability of 1

7 to get x.

Next, we first discuss the rule of binary strings of the
0/1-encoding sets for a certain integer x by Theorem 5,
and then summarize how to recover the integer x from the
0/1-encoding sets and prove the fact with Theorem 6.

Theorem 5. Assume that x = x
(i)
k = tktk−1...t1 ∈ GF k

2 ,

then the 0/1-encoding set of x
(i)
k can be represented by
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Table 2: All the possible values of x

x x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

binary 111000 110100 110010 110001 101100 101010 101001 100110 100101 100011
decimal 56 52 50 49 44 42 41 38 37 35

x x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

binary 011100 011010 011001 010110 010101 010011 001110 001101 001011 000111
decimal 28 26 25 22 21 19 14 13 11 7

the 0/1 encoding set of x
(j)
k−1 as follows.

S0

x
(i)
k

=


{
1, 0||c|c ∈ S0

x
(j)
k−1

}
, tk = 0{

1||c|c ∈ S0

x
(j)
k−1

}
, tk = 1

,

S1

x
(i)
k

=


{
0||c|c ∈ S1

x
(j)
k−1

}
, tk = 0{

1, 1||c|c ∈ S1

x
(j)
k−1

}
, tk = 1

,

where j =

{
i, 1 ≤ i ≤ 2k−1

i− 2k−1, 2k−1 < i ≤ 2k
.

Proof. We will use the mathematical induction to prove
it.

Let n = 1, x = x
(i)
1 = t1 ∈ GF2, then there are two

cases:

x
(1)
1 = 0, S0

x
(1)
1

= {1} , S1

x
(1)
1

= ∅;

x
(2)
1 = 1, S0

x
(2)
1

= ∅, S1

x
(2)
1

= {1} .

Let n = 2, x = x
(i
2 ) = t2t1 ∈ GF 2

2 , then there are four
cases:

x
(1)
2 = 00, S0

x
(1)
2

= {1, 01} , S1

x
(1)
2

= ∅;

x
(2)
2 = 01, S0

x
(2)
2

= {1} , S1

x
(2)
2

= {01} ;

x
(3)
2 = 10, S0

x
(3)
2

= {11} , S1

x
(3)
2

= {1} ;

x
(4)
2 = 11, S0

x
(4)
2

= ∅, S1

x
(4)
2

= {1, 11} .

Let n = 3, x = x
(i
3 ) = t3t2t1 ∈ GF 3

2 , then there are
eight cases:

x
(1)
3 = 000, S0

x
(1)
3

= {1, 01, 001} , S1

x
(1)
3

= ∅;

x
(2)
3 = 001, S0

x
(2)
3

= {1, 01} , S1

x
(2)
3

= {001} ;

x
(3)
3 = 010, S0

x
(3)
3

= {011, 1} , S1

x
(3)
3

= {01} ;

x
(4)
3 = 011, S0

x
(4)
3

= {1} , S1

x
(4)
3

= {01, 011} ;

x
(5)
3 = 100, S0

x
(5)
3

= {101, 11} , S1

x
(5)
3

= {1} ;

x
(6)
3 = 101, S0

x
(6)
3

= {11} , S1

x
(6)
3

= {1, 101} ;

x
(7)
3 = 110, S0

x
(7)
3

= {111} , S1

x
(7)
3

= {1, 11} ;

x
(8)
3 = 111, S0

x
(8)
3

= ∅, S1

x
(8)
3

= {1, 11, 111} .

From above, we can see that

S0

x
(i)
2

=


{
1, 0||c|c ∈ S0

x
(j)
1

}
, t2 = 0{

1||c|c ∈ S0

x
(j)
1

}
, t2 = 1

,

S1

x
(i)
2

=


{
0||c|c ∈ S1

x
(j)
1

}
, t2 = 0{

1, 1||c|c ∈ S1

x
(j)
1

}
, t2 = 1

,

where j =

{
i, 1 ≤ i ≤ 2

i− 2, 2 < i ≤ 22
.

S0

x
(i)
3

=


{
1, 0||c|c ∈ S0

x
(j)
2

}
, t3 = 0{

1||c|c ∈ S0

x
(j)
2

}
, t3 = 1

,

S1

x
(i)
3

=


{
0||c|c ∈ S1

x
(j)
2

}
, t3 = 0{

1, 1||c|c ∈ S1

x
(j)
2

}
, t3 = 1

,

where j =

{
i, 1 ≤ i ≤ 22

i− 22, 22 < i ≤ 23
. So when n = 2 and

n = 3, the conclusion holds.
Now suppose n = k − 1, the conclusion also holds,

namely

S0

x
(i)
k−1

=


{
1, 0||c|c ∈ S0

x
(j)
k−2

}
, tk−1 = 0{

1||c|c ∈ S0

x
(j)
k−2

}
, tk−1 = 1

,

S1

x
(i)
k−1

=


{
0||c|c ∈ S1

x
(j)
k−2

}
, tk−1 = 0{

1, 1||c|c ∈ S1

x
(j)
k−2

}
, tk−1 = 1

,

where j =

{
i, 1 ≤ i ≤ 2k−2

i− 2k−2, 2k−2 < i ≤ 2k−1
. Then when n =

k, namely, x = x
(i)
k = tktk−1...t1 ∈ GF k

2 , there are two
cases:

1) tk = 0.
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a. Let tk−1 = 0, that is, x
(i)
k = 00tk−2...t1, we

can get S0

x
(i)
k

=

{
1, 01, 0||0||c|c ∈ S0

x
(j)
k−2

}
and

S1

x
(i)
k

=

{
0||0||c|c ∈ S1

x
(j)
k−2

}
, where 1 ≤ i = j ≤

2k−2.

b. Let tk−1 = 1, namely, x
(i)
k = 01tk−2...t1,

we can get S0

x
(i)
k

=

{
1, 0||0||c|c ∈ S0

x
(j)
k−2

}
and

S1

x
(i)
k

=

{
01, 0||0||c|c ∈ S1

x
(j)
k−2

}
, where j = i −

2k−2, 2k−2 ≤ i ≤ 2k−1.

So when tk = 0, we can get S0

x
(i)
k

={
1, 0||c|c ∈ S0

x
(j)
k−1

}
, S1

x
(i)
k

=

{
0||c|c ∈ S1

x
(j)
k−1

}
, where

1 ≤ i = j ≤ 2k−1.

2) tk = 1.

a. Let tk−1 = 0, that is to say, x
(i)
k = 10tk−2...t1,

we can get S0

x
(i)
k

=

{
11, 1||0||c|c ∈ S0

x
(j)
k−2

}
and

S1

x
(i)
k

=

{
1, 1||0||c|c ∈ S1

x
(j)
k−2

}
, where j = i −

2k−1, 2k−1 < i ≤ 3× 2k−2.

b. Let tk−1 = 1, that means x
(i)
k = 11tk−2...t1,

we can get S0

x
(i)
k

=

{
1||1||c|c ∈ S0

x
(j)
k−2

}
and

S1

x
(i)
k

=

{
1, 11, 1||1||c|c ∈ S1

x
(j)
k−2

}
, where j =

i− 3× 2k−2, 3× 2k−2 < i ≤ 2k.

So when tk = 1, S0

x
(i)
k

=

{
1||c|c ∈ S0

x
(j)
k−1

}
and S1

x
(i)
k

={
1, 1||c|c ∈ S1

x
(j)
k−1

}
hold, where j = i− 2k−1, 2k−1 <

i ≤ 2k.

Therefore, when n = k, we can get

S0

x
(i)
k

=


{
1, 0||c|c ∈ S0

x
(j)
k−1

}
, tk = 0{

1||c|c ∈ S0

x
(j)
k−1

}
, tk = 1

,

S1

x
(i)
k

=


{
0||c|c ∈ S1

x
(j)
k−1

}
, tk = 0{

1, 1||c|c ∈ S1

x
(j)
k−1

}
, tk = 1

,

where j =

{
i, 1 ≤ i ≤ 2k−1

i− 2k−1, 2k−1 < i ≤ 2k
.

To sum up, the conclusion of Theorem 5 is true.

Remark 2. When S1

x
(i)
k

= ∅ (or S0

x
(i)
k

= ∅),{
1||c|c ∈ S1

x
(i)
k

or S0

x
(i)
k

}
= ∅.

Theorem 6. Let x be an any positive integer. Given
the 0/1-encoding sets S0

x and S1
x, the value of x must be

recoverable.

Proof. Given a positive integer x, it must be equal to some

x
(i)
n . Thus we can recover x according to Theorem 5 the-

oretically. The proof process of Theorem 5 shows that we

can recover the value of x
(i)
n when given the correspond-

ing 0/1-encoding sets S0

x
(i)
n

and S1

x
(i)
n

, where n = 1, 2, 3.

When n = 4 , given the 0/1-encoding sets S0

x
(i)
4

and S1

x
(i)
4

of x
(i)
4 , they must be represented by the 0/1-encoding sets

S0

x
(j)
3

and S1

x
(j)
3

of x
(j)
3 , where i and j satisfy Theorem 5.

Specifically, we just need to figure out the correspond-

ing x
(j)
3 . Assume x

(j)
3 = t3t2t1, if the 0/1-encoding sets

of x
(i)
4 and x

(j)
3 satisfy the first case of Theorem 5, then

x
(i)
4 = 0t3t2t1. Otherwise, x

(i)
4 = 1t3t2t1. In this way, we

can certainly recover the value of x
(i)
n when n ≤ k − 1.

When n = k, given the 0/1-encoding sets S0

x
(i)
k

and

S1

x
(i)
k

, we can definitely find the corresponding x
(j)
k−1,

where the 0-encoding sets S0

x
(j)
k−1

and S0

x
(i)
k

(and the 1-

encoding sets S1

x
(j)
k−1

and S1

x
(i)
k

) satisfy Theorem 5. Sup-

pose x
(j)
k−1 = tk−1...t2t1, we can get x

(i)
k = 0tk−1...t2t1 or

x
(i)
k = 1tk−1...t2t1 according to Theorem 5.
To sum up, if S0

x and S1
x of x are given, we can definitely

recover the value of x theoretically.

Remark 3. In the above proof, we can recover the value

x = x
(i)
n by finding the corresponding x

(j)
n−1, and re-

cover the value of x
(j)
n−1 by the corresponding x

(k)
n−2,

and so on. We can finally get the value of x using
the recursion method. However, it is a little bit te-
dious, Theorem 5 just claims that x can be recovered
theoretically.

In the following, we will give a specific method to
recover the value of x.

Proof. Assume x = tntn−1...t1 ∈ GFn
2 and t be the

longest binary string of the 0/1-encoding sets of x, then
there must be two cases:

1) If t1 = 1, then t = tntn−1...t1 ∈ S1
x;

2) If t1 = 0, then t = tntn−1...t̄1 ∈ S0
x;

Given the 0/1-encoding sets S0
x and S1

x of x, it is easy
to find the longest binary string t = ynyn−1...y1 of two
sets, and then we can determine the relationship x and t
according to the set which t belongs to. Finally, we can
recover x, i.e.,{

x = t = ynyn−1...y1, t ∈ S1
x

x = ynyn−1...ȳ1, t ∈ S0
x

.

From above, we can see that the value of x depends on
the set which the longest binary string t belongs to, and
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it mainly depends on the value of t1 (t1 ∈ GF2). Given
an any positive integer x, it must be

t1 =

{
0, x = 2n

1, x = 2n− 1
, n ∈ N∗.

Since Pr(x = 2n) = Pr(x = 2n−1) = 1
2 , so Pr(t1 = 1) =

Pr(t1 = 0) = 1
2 , namely Pr(t ∈ S1

x) = Pr(t ∈ S0
x) =

1
2 .

Therefore, if an adversary only has a set S0
x or S1

x of x, it
also has a probability of 1

2 to recover the value of x.

Example 3. The adversary captures two encoding sets of
x (and it maybe do nor know which set of S1 and S2 is
the 0-encoding set or 1-encoding set),

S1 = {10110101, 1011011, 10111, 11} ,
S2 = {101101, 1011, 101, 1} .

The adversary can first find the longest binary string
t = 10110101 and t ∈ S1. By observing the relation-
ship of these elements in S1, it can be found that S1 is
0-encoding set (because short codes must be prefixed to
long codes in the 1-encoding set). Hence, t ∈ S1 = S0

x and
x = 10110100 = 180. To sum up, even if the adversary
captures part of the 0/1-encoding sets, there still exists
a certain probability that the adversary will recover the
integer values being compared.

5 Conclusions

In this paper, three theorems are given to illustrate how
to determine the relations (” > ”, ” ≤ ” and ” = ”) of
two positive integers by the 0/1-encoding method. Then,
another three theorems and related examples show that if
the 0/1-encoding results are not blindly preprocessed, it
is easy to leak the integer values being compared, which
obviously contradicts the original designed intention of
the encoding method. Since the privacy of integer values
in many fields, when using the 0/1-encoding method for
numerical comparison, the 0/1-encoding sets should be
properly encrypted or blinded, or the intersection of two
0/1-encoding sets should be calculated confidentially [9]
to avoid privacy leakage.
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