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Abstract

With more and more attention paid to privacy preserva-
tion in social networks, many effective methods based on
differential privacy have been presented. To preserve the
sensitive information of edge weights in a weighted social
network, we combine the differential privacy with wavelet
transform and devise a DPEW (Differential Privacy based
Edge weight with Wavelet Transform) method. The pro-
posed method satisfies differential privacy and provides
better data utility. In this method, WTDP (Wavelet
Transform based on Differential Privacy) algorithm can
achieve differential privacy preserving while less noise is
added on the edge weights. In addition, the properties
of the original graph are maintained by EDU (Enhanc-
ing Data Utility) algorithm. The experimental results
show that the DPEW method achieves ϵ-differential pri-
vacy and reduces the information loss of the edge weight
than other methods.

Keywords: Differential Privacy; Perturbation Ratio;
Wavelet Transform; Weighted Social Network

1 Introduction

Nowadays, with the widespread popularity of mobile In-
ternet, the Internet has become more and more close to
our life. For example, about ten years ago, we usually
went out to shopping in the supermarket, but now we
can buy almost anything online at home. With the help
of Internet, we can use a mobile phone to record and an-
alyze information about running and walking, which can
promote us to keep training. Especially, the online so-
cial network, which merges our online and offline lives,
has played a more and more important role in our daily
lives. Through the Facebook platform, the largest social
network in the world, which has 2 billion monthly active
users, we can make friends and share information anytime

and anywhere. In addition, we can also do many things on
social networks, such as shopping, advertising, Video Live
Broadcasting and so on, which bring great convenience to
our lives. More importantly, recently, with the develop-
ment of VSNs (Vehicular Social Networks), the numerous
applications for VSNs will occupy our daily lives. Hence,
we can say, social networks online have greatly changed
our lifestyle.

However, social networks online appear to be a double-
edged sword:although they bring us a lot of conveniences,
they also present a great challenge to us. For example,
social networks online contain a great quantity relation-
ships between every individual, such as schoolmate rela-
tion, colleague relation and so on. Moreover, these rela-
tionships may be relevant to all kinds of attributes (weight
values, directions), which are personal sensitive informa-
tion. As a result, when social networks are published
without privacy preserving, it is a great possibility to in-
fer the hidden and secret information with high accuracy,
which results in many privacy leakage problems. There-
fore, in order to preserve privacy of social networks, it
is critical for us to present effective privacy preserving
methods.

For preserving privacy of social networks, we can ab-
stract a social network as a graph where the vertices rep-
resent the individuals and the edges represent relation-
ships among individuals. Therefore, the graph modified
methods are widely used in this area. A simple method
is naiVe anonymization method which is presented by
Hay [6]. To resist connection-based attacks, edge and
vertex modification methods which randomly perturbed
the original graph are proposed. For example, Hay [6]
also proposed the random perturbation algorithm. In ad-
dition, a random perturbation method called Blockwise
random Add/Delete was developed by Ying [19]. In or-
der to improve the data utility, many constrained pertur-
bation methods to satisfy some desired constraints were
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developed, such as a spectrum preserving approach [20]
and the k-anonymity model [12,14].

In addition to the methods mentioned above, a well-
known privacy-aware computation method called differ-
ential privacy [3], which can defend against any attacks
based on background knowledge, has been widely applied
for privacy preserving in many areas, such as the smart
grid information system [4]. Due to being able to provide
rigorous privacy guarantee, the popular differential pri-
vacy mechanism has been used to publish sensitive graph
data, such as the number of triangles and k-stars [16].
Different from adding noise to the graph data, the dif-
ferential privacy technology based on the Stochastic Kro-
necker Graph Model [8] was introduced to provide privacy
preserving on a graph, which can improve data utility sig-
nificantly [13]. Thus, as a useful privacy preserving tech-
nology, differential privacy technology can also be widely
applied in weighted social networks.

In weighted social networks, for preserving the weight
value of edges which indicate the degree of intimacy be-
tween individuals, the researchers have proposed many
methods which can be divide into two classes. One class is
based on the K-anonymous technology [22], and the other
is based on the differential privacy. Compared with the K-
anonymous technology, the differential privacy will result
in insufficient data utility because of a lot of Laplacian
noise when preserving social networks. In order to im-
prove the data utility, all kinds of transformation methods
are used in differential privacy. As a special transforma-
tion method, the wavelet transform can not only provide
rigorous privacy guarantee but also can keep a certain de-
gree data utility, which is presented by Xiao [18].In this
paper, a well known Haar wavelets, which has the simplest
orthogonal basis among all discrete wavelet transforms, is
used to achieve differential privacy while reducing the per-
turbation of noise. Further more, the shortest distances
between some important nodes in the weighted social net-
work are kept unchanged in our method, which make our
method to have a better data utility than other methods.

In summary, our contributions are described as follows:

1) We devise a DPEW (Differential Privacy based Edge
weight with Wavelet Transform ) method, which sat-
isfies the differential privacy with better data utility.

2) We propose two algorithms. The first algorithm
is WTDP (Wavelet Transform based on Differential
Privacy), which can achieve differential privacy pre-
serving while adding less noise on the edge weights.
The second is EDU (Enhancing Data Utility), which
is an algorithm that can maintain the properties of
original weighted social network to enhance the data
utility.

3) We present the PR (perturbation ratio) to evaluate
the different methods in privacy preserving, which is
more intuitively than parameter ϵ. and we compare
our method with other different methods in the syn-
thesis and real data sets.

In the following sections, the organization of this paper
is outlined as follows. In Section 2, we introduce many
kinds of privacy preserving methods which are applied in
social networks. we give some preliminaries, including the
differential privacy, the wavelet transform and the proper-
ties of graph in Section 3. Section 4 describes our privacy
preserving method and algorithms. The experimental re-
sults and comparison are illustrated in Section 5. Finally,
Section 6 concludes this paper.

2 Related Work

Since differential privacy was put forward by C. Dwork, a
lot methods based on differential privacy have been pro-
posed, which can be classified into edge differential pri-
vacy and node differential privacy [7]. As one of the most
important properties of a graph, the degree distribution
was protected by an efficient algorithm based on K-edges
differential privacy, which was provided by Hay [1]. In
order to protect another important statistics, such as sub-
graph counts, Zhang [10] introduced a new method which
guarantees differential privacy by using ladder framework.
Comparing with edge differential privacy, node differen-
tial privacy could satisfy stronger privacy guarantees, but
preform lower data utility. In order not to change original
data significantly, Kasiviswanathan [5] use several tech-
niques to develop node differential privacy algorithms,
which improve the data utility. In the method based on
node differential privacy [21], the aggregation technique
and the cumulative histogram technique were used to ob-
tain better data utility in publishing the degree distribu-
tion.

In weighted social networks, being a significant prop-
erty, edge weighs can be protected by many techniques,
such as K-anonymous technique and differential privacy
technique. To prevent attacks based on background, k-
anonymity of nodes method [15] and [k1, k2]-shortest path
privacy method [17] have been presented. Based on dif-
ferential privacy, a method with the MB-CI strategy is
proposed to protect edge weight, which enhanced the ac-
curacy and utility of the published data [9].

Due to having a better property on privacy preserv-
ing and data utility, the wavelet transform as a signal
transformation method can be used for data perturba-
tion. To prevent the privacy in certain data from be-
ing revealed in data mining, Liu [11] presented a method
based on wavelet transform which maximized data utility.
For better privacy, Xiao [18] achieved differential privacy
by combining wavelet transform. In privacy preserving
clustering, Dishabi [2] proposed a different privacy based
method with daubechies-2 wavelet transform.

3 Preliminaries Knowledge

In this paper, a weighted social network is regarded as a
simple, undirected, weighted graph G=(V, E, W ), where
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V=(v1, v2, · · · , vn) with each vi representing an indi-
vidual in social network, E=(e1, e2, · · · , en) with each
ei describing a relationship between two vi, W=(w1, w2,
· · · , wn ), each wi describes a kind of attribute of ei.

Definition 1. (Neighboring graph). For two
weighted graphs G1 =(V1,E1,W1), G2=(V2,E2,W2),
if |V1

⊕
V2|+|E1

⊕
E2|=2, where

⊕
is Exclusive - OR

operation, we can say that G1 and G2 are neighbors. As-
suming V1=V2, if |E1

⊕
E2|=2, G1 and G2 are neighbors.

In this paper, we assume that there are two different
edges between two graphs G1 and G2. In general, because
the difference of two graphs is two edges, edge differential
privacy is used to achieve differential privacy.

Definition 2. (Differential Privacy). If a randomized al-
gorithm R satisfies ϵ-differential privacy, there is a con-
clusion as following:

Pr[R(G1) ∈ T] ≤ exp(ϵ)Pr[R(G2) ∈ T].

where T ⊆ Range(R), G1,G2 are neighbors and ϵ is a
privacy budget. In order to achieve differential privacy,
we comply with Laplace Mechanism to add the Laplace
noise on the result of queries.

Definition 3. (Laplace Mechanism). In a weighted
graph, assuming a query function is Q, where G is a
weighted graph, w is a weight sequence of G. Given two
G1 and G2, which are neighbors, according to the defini-
tion 1, the sensitive of Q is as following:

∆Q = maxG1,G2
∥Q(G1)−Q(G2)∥1.

The Laplace mechanism is a special technique, which
adds Laplace noise to the output of a query function to
satisfy differential privacy.

R(G) = Q(G) + Lap(
∆Q

ϵ
).

where the Laplace noise satisfies Laplace distribution,
which is described as follows.

d(x) =
1

2b
exp(−|x− µ|

b
)

where µ=0 b=∆Q
ϵ , µ is a horizontal deviation, b is a scale

variable and x is a variable.

Definition 4. (Post-Processing). Given a randomized
algorithm A that satisfies ϵ-differential privacy, F is an
arbitrary randomized function. Then a randomized algo-
rithm F· A satisfies ϵ-differential privacy.

Definition 5. (Wavelet transformationation). As a
special technique in mathematics, DWT(discrete wavelet
transformation) can divide an input discrete sample
into AC(approximation coefficients) and DC(detail coeffi-
cients),which respectively correspond to the low frequency
and high frequency parts of the original sample. Such a
wavelet decomposition process can be carried out recur-
sively up to the expected decomposition. On the contrary,

IDWT (inverse discrete wavelet transformation) can re-
combine AC and DC into the original sample. The AC
and DC are respectively defined as follows:

AC =

∞∑
k=−∞

x(k)g(2l − k)

DC =

∞∑
k=−∞

x(k)h(2l − k).

where g is a low frequency filter and h is a high frequency
filter. In AC, acjl denotes the j-th approximation coeffi-
cients in the l-th level of decomposition.

In this paper, we choose a well known Haar wavelets,
which has the simplest orthogonal basis among all dis-
crete wavelet transforms. The scaling function of Haar
wavelet transform is represented by S, which is indicated
as follows:

s =

{
1 0 ≤ x < 1

0 otherwise

The mother wavelet of Haar wavelet transform is denoted
by M, which is described as follows:

M(x) =


1 0 ≤ x < 0.5

−1 0.5 ≤ x < 1

0 otherwise

Definition 6. (degree centrality). The degree centrality
of node vi is the sum of the number of adjacent nodes,
which is denoted by Cd(vi). Formally, the degree central-
ity is given by:

Cd(vi) =

n∑
j=1

a(vi, vj)

where a( vi,vj) denotes the edge between node vi and node
vj. In general, a( vi,vj) equals 1.

In a weighted graph, the weight degree centrality of
node vi is the sum of the weights of edges which connect
node vi. We can define the weight degree centrality as:

Cdw(vi) =

n∑
j=1

w(vi, vj)

where w(vi,vj) represents the weight of edge between node
vi and node vj .

Definition 7. (The between centrality). The between
centrality of node vi is given by:

Cb(vi) =
∑
j,k

p(vj , vi, vk)

p(vj , vk)

where p(vj , vk) denotes the number of shortest paths be-
tween node vj and node vk, p(vj , vi, vk) is the number
of shortest paths between node vj and node vk which go
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through vi. In a weighted graph, the betweenness central-
ity is defined by:

Cbw(vi) =
∑
j,k

pw(vj , vi, vk)

pw(vj , vk)

where pw(vj , vk) is the sum of edge weight in shortest
paths between node vj and node vk, pw(vj , vi, vk) is the
sum of edge weight in shortest paths between node vj and
node vk which go through vi.

4 DPEW Method

In this section, we propose a DPEW method to preserve
edge weight privacy in a social weighted network when it
is published. In this method, we devise two algorithms:
WTDP algorithm and EDU algorithm. WTDP algorithm
can achieve differential privacy preserving while adding
less noise on the edge weights, and EDU algorithm can
maintain the properties of original weighted social net-
work. In addition, we prove that DPEW method satisfies
differential privacy while obtaining better data utility.

4.1 The Model of DPEW Method

For preserving edge weight privacy in the weight social
networks, we introduce a practical method that combines
wavelet transform with differential privacy, which also
maintains the shortest path length between some impor-
tant nodes in original weight social network unchanged.
The frame structure of proposed method is illustrated in
Figure 1.

In this model, the input is an original weighted so-
cial network, which has sensitive information: the edge
weights. The output is a published weighted social net-
work which is preserved by differential privacy. In order
to provide rigorous privacy guarantee, wavelet transfor-
mation and differential privacy are combined in WTDP
algorithm, which satisfies ϵ-differential privacy. Owing to
the deficiency of data utility caused by the Laplace noise,
this model present EDU algorithm which aims to preserve
the character of original weighted social network for en-
hancing data utility. Therefore, our method can not only
preserve the privacy of the original weighted social net-
work but can also keep the data utility of the published
weighted social network.

4.2 WTDP and EDU Algorithm

4.2.1 WTDP Algorithm

With the application of wavelet transformation, we pro-
pose a new algorithm which adds less noise to achieve
differential privacy for weights of edges. In this algo-
rithm, we first get a weight sequence of edge weights
W and apply wavelet transformation on it, After that,

we gain the approximation coefficients and the detail co-
efficients of sequences wavelet transformation. Accord-
ing to Laplace mechanism, we add Laplace noise to the
approximation coefficients to achieve differential privacy.
Thus, we can generate a preserved weighted graph by us-
ing inverse wavelet transformation. The frame structure
of WTDP algorithm is illustrated in Figure 2 and Algo-
rithm 1.

Algorithm 1 The WTDP algorithm

Input: The original weighted social network: G=(V, E,
W );the best decomposition level: C ; privacy budget: ϵ;

Output: The noised weighted social network: G’=(V, E,
W’ )
1: Wm←Max(W)
2: Sensitivity: ∆ f = Wm

C

3: b ← ∆f
ϵ

4: Wa ← wavelet transform in W
5: for wai in Wa:
6: A Laplace noise ni ← Laplace(b)
7: Adding ni on wai
8: Wa’ ← Wa
9: W’ ← Inverse Wavelet transformation Wa’ and Wd
10: Return noised weighted social network: G’=(V, E,
W’ )

In WTDP Algorithm, we input a social weighted net-
work G, the best decomposition level C and privacy bud-
get ϵ. For preserving edge weights in this social weighted
network G, we first get the max edge weight in line 1.
Then, from line 2 to line 3 the scale parameter b in
Laplace distribution is obtained. Line 4 describes the
wavelet transformation ofW and gains approximation co-
efficients Wa. In line 5-8, for every wai in Wa, a Laplace
noise ni is added and we get the perturbed approximation
coefficients Wa’. By using the perturbed approximation
coefficients Wa’ and the original detail coefficients, line 9
describes the inverse wavelet transformation and obtains
a noised edge weight sequence W’. Finally, we get an edge
weight sequence W’ which is preserved by WTDP algo-
rithm.

4.2.2 EDU Algorithm

For minimizing the changes of edge weight and achieving
better data utility, we propose an algorithm to keep some
characters of original social weighted network unchanged
in the noised social weighted network. In order to achieve
this purpose, we select some important nodes which pos-
sess large degree centrality and betweenness centrality in
original social weighted network and make the shortest
distance between these selected important nodes in the
noised social weighted network equal to that in the social
weighted network graph. Thus, the description of EDU
algorithm is given in Figure 3 and Algorithm 2.

In this algorithm, we use the composite parameters Nc
to evaluate the importance of node, which is shown as
follows.

Nc =
√
Cdw(vi)2 + Cbw(vi)2
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Figure 1: The model of DPEW method

Figure 2: The WTDP algorithm

where Cdw(vi) denotes the weight degree centrality of
vi, Cbw(vi) represents the betweenness centrality of vi.
The larger Nc, the more important node vi is. When the
shortest distance between two important nodes is main-
tained unchanged in a noised social weighted network, the
shortest distance between any two nodes in a noised social
weighted network will be closed to that in the original so-
cial weighted network. If more shortest distance are kept
unchanged in noised weight social network, there may be
less perturbation on the published weight social network.

For the EDU algorithm, the detail is described as fol-
lows. Firstly, we select k important nodes according to
the value of Nc, then we work out the shortest distance
among those nodes in the original social weighted network
and in the noised social weighted network. Secondly, we
make the edge weights in the noised social weighted net-
work to be equal to these in the original social weighted
network. At last, we get a perturbed social weighted net-
work which not only preserves the original social weighted
network but also gains better data utility.

In EDU algorithm, we calculate Nc of nodes in an orig-
inal weight social network in line 1. Line 3 generates the
important node sequence D’ after selecting k nodes ac-
cording to value of Nc. Line 4 to line 9 outline how to
keep the shortest distance of nodes in D’ unchanged in
G”. Line 4 and line 7 calculate the shortest path of nodes
in the original weight social network and get the edges list
Le and edge weights list We in shortest path, The modifi-
cation of the edge weight in G∗ is described in line 8 and
line 9, which keep the length of the shortest path in G
unchanged. Finally, this algorithm returns a perturbed
weight social network G” which preserves the shortest
distance length in the original weight social network.

Algorithm 2 The EDU algorithm

Input: weighted social network: G=(V, E, W ); noised
weight social network: G’=(V, E, W’ )

Output: perturbed weight social network: G”=(V, E,W”)
1: Calculating Nc of nodes in G
2: Selecting k nodes from V according to value of Nc
3: Generating a sequenceD’ containing k important nodes
4: for i in D’ :
5: for j in D’ :
6: Calculate shortest path from node i to node j in
G
7: Get edges list Le and edge weights listWe in short-
est path
8: Keep the length of shortest path unchanged in G’
9: Modifying the edge weight in G’
10:Return perturbed weighted social network: G”=(V,
E,W”)

4.3 Theoretical Analysis

Given a weighted social network G=(V, E, W), W is the
edge weight sequence. After transforming the W into
wavelet domain, we get Wa, which denotes the approxi-
mation coefficients, and Wd, which represents the detail
coefficients.

Assume that two weighted social networks, G1 and G2

are neighbors, and the difference between G1 and G2 is
two edges. LetQ(•) be a query function Q :G→ Wa, so
Q(G1)=Wa1, Q(G2)=Wa2. According to the definition
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Figure 3: The EDU algorithm

of sensitive, we get the sensitivity of Q :

∆Q = maxG1,G2
|Q(G1)−Q(G2)|1

∆Q = max|Wa1 −Wa2|1
= max|(wa11, wa12, ..., wa1m)− (wa21, wa22, ..., wa2m)|

=
∆(wmax − wmin)

2ND

where wmax and wmin are the maximum and minimum
values in the W, ND is the level of decomposition. Then,
we add the Laplace noise to the output of Q in accordance
with the Laplace Mechanism, where LA is the Laplace
Mechanism.

Let Pr [G1] denotes the probability density function
of LA (G1, Q, ε), and Pr [G2] indicates the probability
density function of LA(G2, Q, ε). Then, the proof is
described as follows.

Pr[LA(G1)]

Pr[LA(G2)]
=

Pr[η(G1)]

Pr[η(G2)]

=
Pr[R−Q(G1)]

Pr[R−Q(G2)]

=

1
2∆Q

ϵ

exp(− |R−Q(G1)|
∆Q
ε

)

1
2∆Q

ϵ

exp(− |R−Q(G2)|
∆Q
ε

)

=
exp(− |R−Q(G1)|

∆Q
ε

)

exp(− |R−Q(G2)|
∆Q
ε

)

= exp(
ε|R−Q(G1)|

∆Q
− ε|R−Q(G2)|

∆Q
)

= exp(
ϵ(|R−Q(G1)| − |R−Q(G2)|)

∆Q
)

≤ exp(
ϵ(|Q(G1)−Q(G2)|)

∆Q
)

≤ exp(
ϵ∆Q

∆Q
) = eϵ

Therefore, we can achieve differential privacy preserv-
ing for Wa. After conducting IDWT on the noised ap-
proximation coefficients Wa and detail coefficients, we

generate a noised edge weight sequence W
′
, which can

be used to construct a noise weight social network. For
better data utility, we carry out modifying the noised W

′

while maintaining the properties of original weighted so-
cial network. At last, we construct a published weighted
social network based on the W

′′
to preserve the original

weighted social network. According to the requirement of
post-processing, we achieve differential privacy preserv-
ing for original weighted social network with better data
utility.

5 Experiments and Results

5.1 Datasets

In experiments, there are two kinds of data sets: the syn-
thetic weighted network data and the real weighted net-
work data. All the data sets used are shown below.

1) Synthetic weighted network. In the experiment with
synthetic data, we generate two random graphs with
500 nodes and 1,000 nodes, which are randomly con-
nected to each other with probability p=0.3. For
each edge, an integer weight is assigned randomly in
the range [1,200]. We call this synthetic graph as
Random Graph.

2) Real weighted network. In the Windsurfers network,
there are 43 nodes and 336 edges, which contains
interpersonal contacts between windsurfers in south-
ern California during the fall of 1986. The Infec-
tious SocioPatterns dataset contains the daily cu-
mulated networks represented in the Infectious So-
cioPatterns visualization, which includes 307 nodes
and 1924 edges. The weights associated with the
edges are the number of 20 seconds intervals during
which close-range face-to-face proximity has been de-
tected. The high-energy theory collaborations (Hetc)
data set is a weighted network of coauthorships be-
tween scientists posting preprints on the High-Energy
Theory E-Print Archive between Jan 1, 1995 and De-
cember 31, 1999. It has 5835 nodes and 13815 edges.
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Figure 4: Comparison of different ND in a synthetic graph

5.2 Privacy Evaluation

For evaluating our method, we take advantage of the
PR (perturbation ratio) to measure the performance in
privacy preserving. Moreover, we compare our method
with other methods in privacy preserving.

5.2.1 Privacy Measurement

In this section, the perturbation ratio (PR) is used to
measure the performance of preserving privacy, which is
the ratio of (Wp -W) to W, where the perturbed edge
weight isWp and the original edge weight isW. The larger
PR, the better privacy preserving.

PR =
Wp −W

W
=

∑n
i=1 |wpi − wi|∑n

i=1 wi

Meanwhile, ND, the number of wavelet decomposition,
which is equal to the level of decomposition l, can deter-
mine the sensitivity in our method. If we want better
privacy preserving, we can decrease ND, otherwise, we
can increase ND for better data utility.

In order to compare with our method, we select
four methods: GR method(Gaussian randomization
method) [10], k-anonymization mothod [15], Edge-DP
method(edge-differential privacy based method), DP-MB
method(differential privacy based on merger of barrels
method) [9]. In the experiments, we set ϵ in [0.1, 0.5,
1, 2, 5], the ND is set in [1,2, 3]. Due to the uncertainty
of the noise, we execute all data sets 10 times by using our
approach and other approaches to average out the results.

5.2.2 Privacy Analysis

In privacy analysis, we first conduct the experiment on
the synthetic data sets and real data sets by using our
method and keep the experiment results in Table 1. As
shown in Table 1, when ND is 1, ϵ is 5, the PR in synthetic
graphs with 500 nodes and 1,000 nodes is respectively 0.11

Figure 5: Comparison of different ND in a Hetc data set

and 0.10, while the PR in three real data sets is 0.63, 0.10,
0.10 respectively. If we decrease ϵ from 5 to 0.1, the PR
in synthetic graphs with 500 nodes increases from 0.11
to 3.72, as does the PR in other data sets. This result
indicates that the smaller ϵ, the better privacy preserving.
When ϵ is 2, if we increase ND from 1 to 3, the PR in
synthetic graphs with 500 will decrease from 0.30 to 0.05,
as will the PR in other data sets, which shows that ND
can affect the privacy preserving.

Next, we describe the changing tendency of PR in our
method with ϵ varying in Figure 4 and Figure 5, where ND
is from 1 to 3, respectively. As shown in Figure 4, when ϵ
increases from 0.1 to 5, PR in synthetic graphs with 1000
nodes decreases simultaneously no matter how much ND
is. When ϵ is a fixed value, the value of PR declines
as the value of ND increases, which means the wavelet
transformation can control the privacy preserving of the
method. In Figure 5, the PR in a Hetc data set is same as
that in Figure 4. By using PR, it is clear that our method
can achieve privacy preserving for the edges. In addition,
for better understanding the comparison among different
methods in a synthetic graph with 1000 nodes and a Hetc
data set, the details are demonstrated in Figure 6 and
Figure 7 respectively. When ϵ is from 0.1 to 5, ND is 2, the
PR obtained by these methods in a synthetic graph with
1000 nodes is illustrated in Figure 6, where the PR in our
method is larger than DP-MB method and smaller than
that in the other three methods. Specially, the change
of PR in GR method is small when ϵ increases from 0.5
to 5. In a Hetc data set, PR in our method, which is
described in Figure 7, is smallest in those five methods no
matter what ϵ is. All the results show that our method
can improve data utility owing to adding less noise to edge
weights.

To sum up, the experimental results show that our
method can achieve differential privacy preserving for
weighted graphs. In addition, by using the wavelet trans-
form in our method, we can control the Laplace noise
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Table 1: The value of PR in our method

ND ϵ synthetic data1 synthetic data2 Windsurfers network SocioPatterns Hetc
1 0.1 3.72 3.70 21.66 40.15 52.11
1 0.5 0.97 0.97 5.82 11.74 32.16
1 1 0.55 0.54 3.06 8.15 16.78
1 2 0.30 0.29 1.06 6.26 10.12
1 5 0.11 0.10 0.63 5.05 4.69
2 0.1 2.05 2.03 9.14 16.72 26.73
2 0.5 0.56 0.55 2.79 6.95 20.14
2 1 0.29 0.30 1.30 5.69 14.78
2 2 0.16 0.15 0.78 4.99 6.12
2 5 0.05 0.05 0.37 4.63 3.16
3 0.1 1.18 1.15 4.86 9.11 10.22
3 0.5 0.30 0.30 1.24 5.17 7.16
3 1 0.16 0.16 0.74 4.72 5.38
3 2 0.05 0.05 0.34 4.48 4.46
3 5 1.5e-16 1.5e-16 0.18 5.24 2.18

Figure 6: Comparison of different method in a synthetic
graph(ND=2)

Figure 7: Comparison of different method in a Hetc data
set(ND=2)
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Figure 8: Comparison of EARE in a synthetic graph

Figure 9: Comparison of EARE in a Hetc data set

which is added on the edge weights. Therefore, our
method gains better privacy preserving than DP-MB
method and has better data utility than GR method, k-
anonymization mothod, and edge-DP method.

5.3 Utility Evaluation

In this section, we define some metrics of the graph to
evaluate the data utility. Then, after analyzing and
discussing our method in data utility, we compare our
method with other methods.

5.3.1 Utility Metrics

To evaluate the data utility, we use four metrics:
EARE (edge average relative error), NARE (node aver-
age relative error), ASD (average shortest distance) and
KSPL (Keeping Shortest Path length).

1) EARE. EARE is the average relative error of edge
weight, which indicates the edge change caused by
privacy preserving. The smaller the value, the higher
data utility.

EARE =

∑n
i=1 |Wpi −Wi|

n

where Wpi denotes the edge weight in published
weighted social network, Wi represents the edge
weight in original weighted social network.

2) NARE. NARE is the average relative error of node
weight, which describes the node change caused by
perturbation. The smaller NARE, the better data
utility.

NARE =

∑n
i=1 |VWpi − VWi|

n

where VWpi denotes the node weight in published
weighted social network, VWi represents the node
weight in original weighted social network.

3) ASD. ASD is an important property of the weighted
graph, which is the average shortest distance among
all pairs of nodes.

ASD =
∑
s,t∈V

d(s, t)

n(n− 1)

where V is the set of nodes in G, d(s, t) is the shortest
path from s to t, and n is the number of nodes in G.

4) KSPL. KSPL is the proportion of unchanged shortest
path length.

KSPL =
Np

′

Np

where Np∗ is the number of unchanged shortest path
lengthen in in published weighted social network,
while Np denotes the total number of shortest path
length in original weighted social network. The larger
KSPL, the more the shortest path lengths are un-
changed.

5.3.2 Utility Analysis

In this experiment, we set ϵ in [0.1,1,2, 5] and ND in 2.
In addition, four methods, such as GR method (Gaus-
sian randomization method) [10], k-anonymization
mothod [15], Edge-DP method(edge-differential privacy
based method), DP-MB method(differential privacy
based on merger of barrels method), are used for com-
parison. Due to the uncertainty of the noise, we conduct
our method and other methods 10 times to average out
the results.

In the utility analysis, first of all, we discuss the ex-
perimental results gained by our method. As shown in
Table 2, when ϵ is 0.1, ND is 2, the results of EARE,
NARE, ASD, KSPL in a synthetic data set with 500 nodes
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Table 2: Utility metrics in our method ND=2

data sets metrics original network ϵ=0.1 ϵ=1 ϵ=2 ϵ=5
synthetic data1 EARE 0 90.30 13.73 7.79 2.90
synthetic data1 NARE 0 8072.21 553.83 202.96 53.32
synthetic data1 ASD 6.12 4.66 4.20 4.56 5.09
synthetic data1 KSPL 1 0.08 0.12 0.16 0.19
synthetic data2 EARE 0 88.92 14.13 8.23 3.03
synthetic data2 NARE 0 15990.36 1197.27 460.88 147.30
synthetic data2 ASD 4.57 4.13 3.12 3.23 3.59
synthetic data2 KSPL 1 0.06 0.12 0.14 0.16
Windsurfers network EARE 0 76.88 15.58 10.92 5.37
Windsurfers network NARE 0 1195.11 226.58 158.77 75.79
Windsurfers network ASD 2.19 12.25 4.95 3.77 2.53
Windsurfers network KSPL 1 0.065 0.066 0.065 0.047
SocioPatterns EARE 0 124.05 41.60 36.24 32.40
SocioPatterns NARE 0 1526.51 493.70 429.52 384.53
SocioPatterns ASD 4.66 71.17 23.33 16.26 11.26
SocioPatterns KSPL 1 0.05 0.08 0.10 0.11
Hetc EARE 0 221.12 21.16 10.12 4.32
Hetc NARE 0 1081.24 112.99 58.94 18.17
Hetc ASD 4.57 253.78 72.45 28.74 13.22
Hetc KSPL 1 0.04 0.05 0.06 0.08

Figure 10: Comparison of ASD in a synthetic graph Figure 11: Comparison of ASD in a Hetc data set
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are 90.30, 8072.21, 4.66, 0.08, respectively. When ϵ is
increased to 5, the values of EARE and NARE will de-
crease simultaneously together. In addition, the value of
ASD is close to that in the original graph because ASD
is mostly associated with the number of the selected im-
portant nodes. In particular, the value of KSPL changes
slightly. Furthermore, it is worth noting that the results
in other data sets are equivalent to those in the synthetic
data set with 500 nodes. All the results state clearly that
data utility will be improved with the increase of ϵ.

Next, particularly when ϵ is changed from 0.1 to 5 in a
synthetic data set with 1000 nodes and a Hetc data set,
the comparison of these methods is illustrated by these
figures as follows. As shown in Figure 8 and Figure 9,
the values of EARE in different methods decline with ϵ
increasing. Specially, in Figure 8, the value of EARE in
our method is smaller than that in the k-anonymization
mothod, the edge-DP method, and the Edge-DP method
when ϵ increases from 0.1 to 5, while it is larger than that
in the GR method as ϵ is less than about 0.5. In Fig-
ure 9, we can see that the value of EARE in our method
is smallest in these mothods. As illustrated in the Fig-
ure 10, the change of the ASD in different methods and
the values of ASD in other four methods are larger than
that in our method. For example, when ϵ equals to 1, the
values in other four methods are 5.21,10.01, 11.24,16.45,
respectively, while the value in our method is 4.2. In addi-
tion, when ϵ is smaller than 1, the value of ASD obtained
by our method is the larger than that in k-anonymization
mothod, which is shown in the Figure 11. Therefore, the
result shows that our method can obtain a better data
utility compared with other methods.

Finally, owing to the wavelet transform and post-
processing, the results indicate that our method can
achieve better performance in data utility than GR
method, k-anonymization mothod, DP-MB method and
edge-DP method. Therefore, we can see that our method
can improve the data utility while satisfying the differen-
tial privacy.

6 Conclusions

For preserving the privacy data of social networks, the
differential privacy which is able to provide strict privacy
guarantee has been extensively applied. Compared with
other differential privacy based methods, in this work, we
focus on achieving differential privacy for edge weights
while keeping the data utility as much as possible and
publishing a preserved weighted social network. There-
fore, we propose a method which combines wavelet trans-
form with differential privacy. In this method, we first
apply the wavelet transform on the edge-weight sequence
and add the Laplace noise to the wavelet coefficients, then
we take advantage of inverse wavelet transform to realize
differential privacy. At last, for modifying the error of
shortest distance of noised graph, a special algorithm is
used to improve the data utility. In addition, we present

two algorithms: WTDP algorithm and EDU algorithm.
To evaluate the performance of our method, the PR is
used to evaluate the privacy preserving of different meth-
ods when ϵ is fixed. Moreover, the theory analysis and ex-
perimental results show that our method not only satisfies
ϵ-differential privacy but also improves data utility. In the
future, due to the perturbation caused by the stochastic
noise in ϵ-differential privacy, we must work hard to main-
tain the property of graph while satisfying ϵ-differential
privacy.
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