
International Journal of Network Security(VDOI: 1816-3548-2022-00001) 1

Improving the Efficiency of Point Arithmetic on
Elliptic Curves Using ARM Processors and

NEON

Pham Van Luc1, Hoang Dang Hai2, and Leu Duc Tan3

(Corresponding author: Pham Van Luc)

Faculty of Electronic Posts and Telecommunications Institute of Technology1

Km10, Nguyen Trai , Ha Dong District, Hanoi, Vietnam

Email: pvluc@bcy.gov.vn

Posts and Telecommunications Institute of Technology Ha Noi, Viet Nam2

Leu Duc Tan Academy of Cryptography Techniques Ha Noi, Viet Nam3

(Received Aug. 31, 2021; Revised and Accepted Jan. 13, 2022; First Online Feb. 14, 2022)

Abstract

Point arithmetic operations, especially scalar point mul-
tiplication, are important for cryptosystems on elliptic
curves. These operations have a large computational over-
head, which significantly affects the efficiency and speed of
the cryptosystems. Several studies proposed methods to
reduce the number of operations and the computational
cost. However, few studies investigated hardware char-
acteristics to improve the efficiency of point arithmetic
operations by reducing the number of intemediate calcula-
tions. In this paper, we propose combining the Karatsuba
algorithm with dual multiplications, which are performed
in parallel on ARM processors with the NEON compo-
nent. We propose some improved algorithms for point
arithmetic operations by grouping pairs of multiplications
or pairs of squarings to reduce intermediate calculations.
Experimental results shown an efficiency increase of from
20% to 30% for point arithmetic operations (point addi-
tion, doubling and scalar point multiplication) and from
10% to 20% for the cryptographic primitive operations
in ECDH and ECDSA protocols on ARMv7 and ARMv8
embedded microprocessors.

Keywords: ARM Processor; Elliptic Curve Cryptogra-
phy; NEON Component; Point Addition; Point Doubling;
Scalar Point Multiplication

1 Introduction

Arithmetic operations in the finite fields, especially scalar
multiplication, play an important role in the elliptic curve
cryptography (ECC) systems. Several standards have
emerged, such as digital signature standard (DSS) [22],
IEEE 1363 [27], and NIST [23], which recommend using
finite fields for the digital signature algorithm on the el-

liptic curves. The most important ECC operation is the
scalar point multiplication kP , where k is an integer, P is
a point on the elliptic curve. To perform the multiplica-
tion, we can use the point addition and the point doubling
multiplication. Point multiplications are more complex,
thus, they take up the most computation time. The effi-
ciency of the ECC cryptosystems mainly depends on the
complexity and the speed of these operations [7, 14, 29].
The solution for these two opposing objectives is challeng-
ing because the efficiency depends further on the comput-
ing power of the deployment platform, especially for con-
strained hardware platforms with low-performance pro-
cessors.

For improving the efficiency of the arithmetic opera-
tions on elliptic curves, theoretical studies often focused
on: 1) reducing the number of the point addition and
point doubling operations required in scalar multiplica-
tions [14]; 2) increasing the efficiency of the point addi-
tion and doubling formulas by exploiting the methods of
point representation on elliptic curves [13]; 3) reducing
the computational cost by improving the efficiency of the
arithmetic operations [11,20]. In fact, these methods can
be combined together for obtaining a better performance
on some hardware platform, such as in [4, 9, 16]. The
Karatsuba (KA) [13] algorithm was the first to efficiently
perform the multiplication of integers with a low com-
putational complexity. However, for deploying on hard-
ware platforms with limited processing capacity or on new
hardware platforms, the algorithm needs to be improved
for taking the full advantage as shown in some studies,
such as [12,16,20,24,28].

In recent years, there is an increasing number of embed-
ded microprocessors that provide single instruction multi-
ple data (SIMD) capabilities to support parallel process-
ing on dedicated modules. The commonly used ARM pro-
cessor family is the Cortex-A architecture [1,9,17]. Most

International Journal of Network Security(VDOI: 1816-3548-2022-00001) 2

Cortex-A architectures include the NEON component,
which provides SIMD vector instructions. The NEON
component allows parallel processing of SIMD instruc-
tions, resulting in an increased computation speed. A
number of studies attempted to exploit the NEON in-
structions on ARM processors for increasing the com-
putation speed of the implemented cryptographic algo-
rithms, such as in [3, 5, 9, 26]. Some recent studies, such
as in [11,12,15,20], shown certain results by applying the
SIMD architecture with NEON for implementing arith-
metic operations on ECC. The NEON instructions, in
particular the decomposition of instructions for perform-
ing parallel tasks in the SIMD architecture, enabled con-
siderable advantages. However, several remaining issues
are the cost of intermediate products, the challenge of
handling propagation carries in prime fields, the problem
of redundant calculations, etc. A large number of redun-
dant intermediate calculations can cause a considerable
degradation of the computation performance.

According to our survey, we see that the problem of re-
ducing redundant intermediate calculations has not been
fully investigated. There is a need for exploiting the spe-
cific features of the new hardware platform with NEON,
such as ARM Cortex-A’s, to reduce redundant instruc-
tions. This possibility can help to increase the computa-
tion speed, and therewith improves the efficiency of the
arithmetic operations on elliptic curves. In particular,
the combination of the well-known Karatsuba algorithm
with ARM’s advanced hardware platform can lead to a
higher performance, but has not received much attention.
The use of much read and write instructions between the
memory and the NEON component can cause a consid-
erable computational overhead, which can result in the
performance degradation of the ECC cryptosystems.

This paper proposes a method to improve the efficiency
of the point arithmetic operations (including the point
addition, the point doubling, and scalar point multiplica-
tion) on elliptic curves. Our method focuses on gaining
the SIMD hardware features of ARM processors with the
integrated NEON component to speed up the point arith-
metic operations. The key features of the method are:
1) combining the ordinary multiplication (the operand-
scanning method) with the Karatsuba’s multiplication al-
gorithm for long operands; 2) implementing the parallel
multiplications (the dual multiplications) on the prime
fields in the combination with pairing to reduce the over-
head of reading and/or writing data between the internal
memory and the NEON component; 3) using an available
large number library RELIC to speed up the computa-
tion. The proposed method has been fully integrated into
the calculations of ECDH (Elliptic Curve Diffie Hellman)
and ECDSA (Elliptic Curve Digital Signature Algorithm)
protocols on GF(p) fields with sizes of 256 bits, 384 bits,
and 521 bits.

The rest of the paper is structured as follows. Section 2
presents related studies. Section 3 gives a brief overview
of elliptic curves over finite fields. Section 4 presents our
methods to improve the efficiency of the point arithmetic.

Experimental results are given in Section 5. Finally, Sec-
tion 6 is the conclusion.

2 Related Work

In this section, we present some typical related studies,
which apply the SIMD architecture and the NEON com-
ponent in order to increase the speed of the arithmetic
operations such as multiplications, squarings, and mod-
ulo operations in the finite fields on elliptic curves.

The authors in [3] suggested using NEON in the
Cortex-A8 processor to speed up the computation of
the shared secret key. A simplified radix representation
method was used to perform NEON-based multiplica-
tions to speed up arithmetic operations on Curve25519
and Ed25519 curves. The NEON vector was used for
two independent multiplications: a point multiplication
as well as a single multiplication. The paper in [9] pre-
sented an algorithm to improve the efficiency of calcu-
lating the scalar multiplications on ECC with the focus
on side-channel protection. Scalar multiplications were
based on the proposed GLV (Gallant-Lambert-Vanstone)
method, and used interleaved ARM-NEON instructions
to perform 128-bit independent multiplications in paral-
lel. The study in [26] implemented an attribute-based
encryption scheme using Cortex-A9 and NEON. The au-
thors proposed a method to exploit the ability to compute
bilinear pairings on the ellictic curves. The authors in [5]
presented a polynomial multiplier using NEON in the
ARM Cortex-A8, A9, and A15 processors. The NEON
vector was used to speed up the computation in the bi-
nary fields on the elliptic curves. The polynomial mul-
tiplier used two 8-bit vectors to form 128-bit products.
These basic multipliers can be used in point multiplica-
tions. Some studies focused on the topic of implementing
cryptographic primitive functions on the SIMD structure
by using the NEON vector to improve the computational
efficiency on ECC, such as [4,17]. In [4], a parallel version
of the Montgomery interleaved multiplication algorithm
was proposed using the extended vector instructions of
SIMD and NEON. The Montgomery multiplication was
splitted into two parallel operations. In [17], the authors
proposed to use the interleaved ARM and NEON instruc-
tions to speed up the multiplications on Fp2 , thereby they
could speed up four-dimensional scalar multiplications on
the FourQ twisted Edwards curves [17].

As we can be, using NEON to perform parallel opera-
tions can provide good efficiency. However, some typical
problems are still remaining as follows. Most of the stud-
ies followed the approach of decomposing the required al-
gorithm into steps for parallel execution using NEON in
the SIMD architecture. This method has the disadvan-
tage as most of the SIMD architectures (including NEON)
do not support the propagation carries between data ele-
ments that are processed in parallel, especially when the
operands are represented in a non-redundant form (with
sufficient radix).Due to this limitation, the paper in [8]

International Journal of Network Security(VDOI: 1816-3548-2022-00001) 3

provided a reduced radix representation method (the re-
dundant form) to facilitate the handling of the carry prop-
agations. However, as indicated in [25], this approach
can lead to more intermediate products than the num-
ber of required operations. The reduced radix represen-
tation (the redundant representation) requires more mul-
tiplications than the canonical representation (the non-
redundant representation). Several methods were pro-
posed in [4,25] to improve the performance by paralleliz-
ing parts in an operation with operands in the full radix
form.

Another trend in applying NEON is to perform two
operations in parallel on the finite fields. It is not nec-
essary to handle the extra carry propagation during data
parallelization. In [20], the authors presented the applica-
tion of the NEON component in the dual multiplication to
improve the efficiency of the Montgomery multiplication.
However, the method in [20] used a lot of instructions
to read and write data between the internal memory and
NEON. The computational overhead for reading and writ-
ing data between the memory and the NEON component
is often quite large. This problem has not been carefully
considered in [20].

The studies in [4, 20, 25] focused on improving the
Montgomery multiplication. This multiplication is said to
be best for multiplying large numbers in a finite field. The
multiplication of large numbers is more suitable for expo-
nentiation operations (e.g, in RSA cryptosystems), but it
is less useful for simple multiplications in ECC cryptosys-
tems. The reason is that the Montgomery multiplication
requires radix conversions. Radix conversions are often
computationally expensive. Studies in [19] and [18] pre-
sented the possibility of improving the multiplication by
decomposing the algorithm into parallel steps in a multi-
plication. The algorithm combined the Karatsuba multi-
plication with the NEON component in the SIMD archi-
tecture. However, the presented method only focused on
the multiplication in the binary fields GF (2), and did not
deal with the carry propagation.

3 Elliptic Curves on Finite Fields

For the sake of clarity, this section presents a brief
overview of the elliptic curves over finite fields. There
are three basic coordinate forms that are commonly used.
They are: 1) relative coordinates (Affine coordinates), 2)
projective coordinates, and 3) compression coordinates.
However, the relative coordinates and the projective co-
ordinates are more commonly used [10,14].

3.1 Affine Coordinates

Let Fp be a finite field with a prime number p, (E) be
the elliptic curve over Fp. A finite point P on (E) is
defined by two elements, x and y, in GF (p) that satisfy
the equation of the curve:

(E) : y2 = x3+ax+b; a, b ∈ Fq, 4a
3+27b2 ̸= 0 (mod p).

x and y are called the relative coordinates (the Affine
coordinate) of the point P . The point at infinity ∞ has
no Affine coordinates. For the purpose of calculations, ∞
is often represented by a pair of coefficients (x, y) that do
not belong to (E).

The grouping rule is often used to express the relation-
ship between the points in a finite field, and is defined as
follows.
Grouping Rule: Let E be an elliptic curve defined on
the field Fp by the equation y2 = x3 + Ax + B with
A,B ∈ Fp and 4A3 + 27B2 ̸= 0 mod p. Let P1 = (x1, y1)
and P2 = (x2, y2) be points on E with P1, P2 ̸= ∞. The
definition of P3 = (x3, y3) with P1+P2 = P3 is as follows:

1) If x1 ̸= x2 then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1,

where m = (y2 − y1)/(x2 − x1).

2) If x1 = x2 but y1 ̸= y2, then

P1 + P2 = ∞

3) If P1 = P2 and y1 ̸= 0, then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1,

where m = (3x2
1 +A)/(2y1)

4) If P1 = P2 and y1 = 0, then

P1 + P2 = ∞

3.2 Projective Coordinates

To avoid the division in the fields, we suggest to represent
the points in projective coordinates (coordinates in the
fraction form). There are two basic types of projective
coordinates, namely, the standard projective coordinates
and the Jacobian projective coordinates.

In the standard projective coordinates, a point is repre-
sented as (X,Y, Z) with Z ̸= 0, which is equivalent to the
Affine coordinate of (X/Z, Y/Z). The standard projective
elliptic curve equation will have the following form:

Y 2Z = X3 + aXZ2 + bZ3

In the Jacobian coordinates, a point (X,Y, Z) is equiv-
alent to the point (X/Z2, Y/Z3) in the Affine coordinates.
The equation of curve (E) has the following form:

Y 2 = X3 + aXZ4 + bZ6

A point with the Jacobian projective coordinates can
be converted to the Affine coordinates according to the
formula as follows:

(X,Y, Z) → (x = X/Z2, y = Y/Z3).

Conversely, we can convert a point in the Affine coor-
dinates to the Jacobian projective coordinates according
to the formula as follows:

(x, y) → (X = x, Y = y, Z = 1).

International Journal of Network Security(VDOI: 1816-3548-2022-00001) 4

For additions and doublings of points in the projective
coordinates, there is no need to use the inversions (di-
visions). The formula for the addition and doubling of
two points in the projective coordinates can be obtained
by converting the points to the Affine coordinates. After
that, we apply the corresponding formula in the Affine
coordinates, and finally, we remove the denominator of
the formula.

3.3 Point Addition

Given 2 points P (x1 : y1 : z1), Q(x2 : y2 : z2) on the
curve E with P,Q ̸= ∞, P ̸= ±Q, we define the point
P +Q = (x3 : y3 : z3) as follows:

Let

a = x1z
2
2 , b = x2z

2
1 , c = y1z

3
2

d = y2z
3
1 , e = b− a, f = d− c

Then, x3 = −e3 − 2a · e+ f2

y3 = c · e3 + f(a · e2 − x3)
z3 = z1 · z2 · e

3.4 Point doubling

Given a point P (x1 : y1 : z1) on the curve E with P ̸= ∞,
we define the point [2]P = (x3 : y3 : z3) as follows: Let

w1 = 4x1 · y21 , w2 = 3x2
1 +A · z41

We have x3 = −2w1 + w2
2

y3 = −8y41 + w2(w1 − x3)
z3 = 2y1z1

The number of operations performed to add and double
points in the coordinates is shown in Table 1 as follows
(where I is the cost of the inverse operation and M is the
cost of the multiplication).

Table 1: Number of operations performed to add and
double points

Coordinates Common
addition

Doubling

Affine 1I,2M 1I,2M

Standard projective coordi-
nates (X/Z, Y/Z)

13M 7M

Jacobian projective coordi-
nates (X/Z2, Y/Z3)

14M 5M

3.5 Scalar Multiplications on Elliptic
Curve

Scalar multiplications can be performed with several al-
gorithms including:

1) right-to-left binary algorithm,

2) NAF (Non-Adjacent Form) algorithm,

3) NAF algorithm with sliding window.

4 A Method for Improving the Ef-
ficiency of Point Arithmetic Op-
erations

In this section, we propose a method for improving the
efficiency of the point additions and doublings on the El-
liptic curve E(Fp) using dual multiplications in the prime
field Fp. The proposed method focuses on leveraging the
SIMD hardware features of ARM processors, especifically
of ARMv7 and ARMv8 [1] with the integrated NEON
component to speed up arithmetic operations.

4.1 The Implementation Model

The model to perform multiplications is depicted in Fig-
ure 1. The basis of the model comprises: 1) the use of an
available large number library, and 2) the implementation
of parallel instructions.

Figure 1: The implementation model

Most available large number libraries (e.g., RELIC,
OpenSSL, MIRACL, GMP) represent large numbers in
a non-redundant form with the radix 232 or 264 to match
the basic multiplication support of the processors. The
execution of two parallel multiplications has the advan-
tage that we do not need to deal with the additional carry
propagations in the case of integrating the proposed al-
gorithms into the existing library. At the GF (p) layer of
the arithmetic operations, we propose to construct three
dual multiplications that have the input operand of 256-
bit, 384-bit, and 521-bit, respectively. At the next step,
we integrate the dual multiplications into the point ad-
ditions and point doublings by reorganizing the steps of
the algorithm to build the pairs of the multiplications and
squarings. Finally, we apply the NAF-based scalar multi-
plication algorithm to perform the scalar multiplications.

4.2 The Multiplication of Large Integers
on GF (p)

Two basic methods are commonly used for the multipli-
cation of large integers on GF (p): 1) the operand scan-

International Journal of Network Security(VDOI: 1816-3548-2022-00001) 5

ning method, and 2) the product scanning method. These
methods differ in the way they handle the operands, and
in the number of instructions for loading and storing the
data needed in the calculation. For describing the men-
tioned methods, we use the following notations. Let A
and B be two large integers of m-bit length stored in the
array

A = (A[s− 1], ..., A[2], A[1], A[0])

and B = (B[s− 1], ..., B[2], B[1], B[0]).

We denote with w the number of bits of the word,
which is usually chosen according to the processor types
(e.g., 8, 16, 32, 64 bit). We denote with s = ⌈m/w⌉
the number of words for representing the integers A and
B. The result of the multiplication, i.e., C = A ∗ B, is
represented using the array

C = (C[2s− 1], ..., C[2], C[1], C[0]).

4.2.1 Operand Scanning Method

The operand scanning method is the simplest method
(also known as the common multiplication [21]) for per-
forming multiplications of large numbers that have two
operands A and B with s words. The method is imple-
mented through two nested loops: the outer loop (the i
loop) is for loading the values A[i], while the inner loop
(the j loop) is for loading the values B[j] and multiplying
by A[i], where j = 0, ..., s − 1. The partial products are
accumulated into the intermediate result column C[i+ j]
along with the carry of the previous column. The for-
mula for calculating the product of the components is as
follows:

Carry, C[i+ j]) = C[i+ j] +A[i] ∗B[j] + Carry.

Figure 2 illustrates how to calculate the component prod-
ucts. The method uses a row-wise view, where the flow
of computation is in the direction of the arrows.

Figure 2: Multiplication of large numbers using the
operand scanning method

The number of instructions for loading and saving data
of this method is determined as follows:

- In each row: The number of load instructions in each
inner loop is 2s (for loading data B[j], C[i+ j]). The
number of save instructions in each inner loop is s (to

store C[i+j]). Thus, the total number of instructions
in each row is 3s.

- The outer loop needs s operands A[i] for loading,
and contains s values for carry, i.e., C[i+ s] = carry.
Thus, the total number of instructions is 2s.

Therefore, the total cost of the operand scanning
method is 2s2+s for loading data, and is s2+s for storing
data, respectively. In total, this method takes 3s2 + 2s
instructions for loading and storing data. It is difficult to
implement the parallelization of the algorithm, because
the data depends on each other in a row-wise manner.

4.2.2 Product Scanning Method

The product scanning method implements the multiplica-
tions of large integers based on column-wise manner [6].
This method has the advantage of reducing the num-
ber of memory accesses. In cryptography, the number
of columns to multiply does not exceed 2w. We have:
s < 23w/22w = 2w, where w denotes the bit length of
a word. Since the accumulator has a size of 3 words, it
can contain the sum of all component multiplications of
a column without having to contain intermediate results.

Figure 3 describes how to perform the product scan-
ning multiplication. First, all operands of each column
are multiplied by each other and their products are cu-
mulatively added (i.e., using a cumulative multiplication
method). After processing a column, the first word of
the accumulator stored in the memory is a part of the
final result. Therefore, no intermediate results are need
for saving or loading in the algorithm. Furthermore, han-
dling the carry propagations is quite easy, because the
carries will be added to the result of the next columns.
In addition, only five registers are required to perform
the multiplication: two registers for storing the input
operands, three registers for serving as the accumulators.
This method is very suitable for the devices with limited
resources. The formula for calculating products in the
product scanning method is as follows:

C = A ∗B =

2s−2∑
t=0

(
∑

i+j=t,0≤i,j≤s−1

Ai ∗Bj)W
t

where W = 2w is called the radix.
The rhombus in Figure 3 represents the process of cal-

culating component products in the column-wise manner
instead of the row-wise manner in the operand scanning
method. In the product scanning method, only one stor-
age operation is needed for storing the word of the final
result. The cost of the entire multiplication is as follows:

- Because the outer loop has a size of 2s and the inner
loop changes from 0 to s, the number of instructions
for loading data (i.e., for loading A[i], and B[j] in
each loop) is 2s2.

- The number of instructions for saving data is 2s (each
step of the outer loop only needs to save one value).

International Journal of Network Security(VDOI: 1816-3548-2022-00001) 6

Figure 3: Multiplication of large numbers using the prod-
uct scanning method

- The total number of instructions for loading and sav-
ing data is 2s2 + 2s.

The following table summarizes the cost of each method.

Table 2: Comparison of computational costs between mul-
tiplication methods

Methods Number of
instructions
for loading
data

Number of
instructions
for saving
data

Total num-
ber of in-
structions

Operand
scanning

2s2 + s s2 + s 3s2 + 2s

Product
scanning

2s2 2s 2s2 + 2s

4.3 Parallelization of Two Multiplica-
tions on the Field GF(p)

The NEON component has sixteen 128-bit registers on
the ARMv7 processors. Thus, we can directly implement
the operand scanning method for multiplications (i.e., the
common multiplications) with sizes of 256-bit and 384-bit.
For 521-bit multiplications, we suggest using the conven-
tional Karatsuba algorithm for the operations based on
the combination of implementations in C and in NEON,
since there are not enough registers to directly implement
on NEON. On the ARMv8 processors, the NEON compo-
nent has more registers (i.e., thirty-two 128-bit registers).
However, we are able to use the same algorithm for both
platforms, ARMv7 and ARMv8.

The modulo calculation algorithm uses the primitive
algorithm as presented in [10]. The SIMD architecture
has the feature of supporting two 32-bit multiplications
using a single instruction. We apply this operation in
Algorithm 1 as follow.

Figure 4 shows the parallel execution of two multipli-
cations. The NEON instructions execute inside the loop
of Step 4 in Algorithm 1 as shown in Figure 5.

Algorithm 1 Parallel multiplication of two multiplica-
tions on the field GF (p)

Input: A = (As−1, ..., A1, A0), B = (Bs−1, ..., B1, B0)
and C = (Cs−1, ..., C1, C0), D = (Ds−1, ..., D2, D1, D0).
Output: M = (M2s−1, . . . ,M1,M0) = A · B and N =
(N2s−1, .., N1, N0) = C ·D.

1: M = 0, N = 0
2: for i=0 to s-1 do
3: T1 = 0, T2 = 0
4: for j=0 to s-1 do
5: (T1, S1) = Mi+j+Ai ·Bj+T1, (T2, S2) = Mi+j+

Ci ·Dj + T2

6: Mi+j = S1, Ni+j = S2

7: end for
8: Mi+s = T1, Ni+s = T2

9: end for
10: return (M,N)
11: End

Figure 4: Parallel multiplication of two multiplications

Figure 5: Calculations in the j-th loop of Algorithm 1
using NEON

As indicated in [21], the values (T1, S1) and (T2, S2) are
represented within two words (for this case the radix is
232). Because it is able to perform two multiplications si-
multaneously, the NEON instructions are useful to speed
up the computations of the arithmetic algorithms. How-
ever, it is expensive for loading and storing data between
the NEON registers and the internal memory. Loading

International Journal of Network Security(VDOI: 1816-3548-2022-00001) 7

and storing instructions are used much in the existing
studies, as we pointed out in the section 2 of this pa-
per. Such instructions can result in a high computational
overhead. For example, data variables are continuously
loaded into the NEON registers and removed from mem-
ory in two loops as shown in Algorithm 3 in the paper [20].
The mentioned method cannot achieve the Pipeline mech-
anism, and the performance of the parallel multiplication
in NEON is significantly slowed down.

Therefore, this paper proposes to minimize the number
of instructions for loading and storing data for leveraging
the advantages of parallel computations in NEON. In this
manner, our method differs from existing methods, e.g.
the method presented in [20]. The method for restricting
the number of instruction is described in detail as below.

4.3.1 Instruction Restriction for 256-bit and 384-
bit Multiplications

Since it takes a long time for reading and writing data
between the memory and the NEON registers (using vld
and vst instructions), we read all inputs from the memory,
and then apply Algorithm 1 for the computation. The
result is written back from the NEON registers to the
memory. This manner can minimize the time of reading
and writing data between the memory and the NEON
registers.

- For 256-bit multiplications: The 256-bit input
operands are stored in an 8-word memory array, each
word consists of 32 bits. Eleven 128-bit registers are
required. Among them, 9 registers are for storing
intermediate products and 2 registers are for stor-
ing temporary variables (e.g. carries, variables for
getting the lower part of the data). In addition, 10
registers of 64-bit are needed, where 9 registers are
for storing input terms and one register is for storing
temporary variables.

- For 384-bit multiplications: The 384-bit input
operands are stored in a 12-word memory array, each
word consists of 32 bits. Fifteen 128-bit registers are
required, where 13 registers are for storing interme-
diate products and 2 registers are for storing tempo-
rary variables. In addition, fourteen 64-bit registers
are needed, where 13 registers are for storing the in-
put terms and one register is for storing temporary
variables.

4.3.2 Evaluating the Number of Instructions for
Loading and Storing Data

Algorithm 3 in the study [20] presented the instructions
for loading and storing data using the neon dual mac2
function. Because the dual multiplication is performed,
the number of instructions is twice as many as the one in
the operand scanning multiplication method. Thus, the
total number of instructions for accessing the memory is
required as 2× (3s2 + 2s).

In our algorithm, i.e. Algorithm 1, the loop i and j
only require to load the operands A, B, C, D, and then
to write the final result (M,N) from the NEON registers
to the memory. Thus, it takes 4s instructions for loading
data and 2× 2s instructions for storing data.

The following table compares the number of data load-
ing and saving instructions between our new proposed al-
gorithm and Algorithm 3 presented in the study [20].

Table 3: Comparison of the number of instructions for
data loading and saving between two algorithms

Methods Number of
instructions
for loading
data

Number of
instructions
for saving
data

Total num-
ber of
instructions
for access-
ing memory

Algorithm
3 [20]

2(2s2 + 2) 2(s2 + s) 6s2 + 4s

Algorithm 1
(256-bit and
384-bit mul-
tiplications)

4s 4s 8s

4.3.3 Instruction Restriction for 521-bit Multi-
plications

In the case of 521-bit multiplications, the 521-bit input
operand is stored in a memory array of 17 words, each
word consists of 32 bits. Twenty 128-bit registers are
needed. However, the ARMv7’s NEON component only
has sixteen 128-bit registers, i.e., it has not enough regis-
ters for implementing the parallel multiplications. There-
fore, we propose a combination mechanism that applies
Karatsuba algorithm to perform 521-bit multiplications
with the C/NEON programming language as follows.

Step 1. Implementing two additional multipliers, i.e., a
dual multiplier for two 288-bit (9 words) operands
and a dual multiplier for two 320-bit (10 words)
operands. The procedure is similar to that for the
dual multiplications of 256-bit operands as presented
above.

Step 2. Applying the conventional Karatsuba algorithm
with one level. The 1-level Karatsuba method is
based on the paper [26]. We split the 521-bit operand
(stored in seventeen 32-bit words) into 2 parts: The
first part has 8 words and the second part has 9
words. Two common approaches can be used for
implementing the Karatsuba algorithm, namely the
additive and the subtractive algorithms. Suppose
that, we want to multiply two pairs of operands,
M = A ·B and N = C ·D, where A = AH ·2256+AL,
B = BH · 2256 + BL and C = CH · 2256 + CL,
D = DH · 2256 + DL. The dual multiplications

International Journal of Network Security(VDOI: 1816-3548-2022-00001) 8

M = A · B and N = C · D are calculated accord-
ing to the following addition formula:

AH ·BH · 2521 + [(AH +AL)(BH +BL)−AH ·BH

−AL ·BL] · 2256 +AL ·BL

CH ·DH · 2521 + [(CH +DL)(CH +DL)− CH ·DH

−CL ·DL] · 2256 + CL ·DL.

The operands AL, BL, CL, DL have a length of 256-
bits (8 words). Therefore, the pairs of multiplications
AL ·BL and CL ·DL are performed using the 8-word
dual multiplication algorithm that is inherited from
the dual multiplier with 256-bit operand length. The
operands AH , BH , CH , DH have a length of 288-bits
(9 words). Thus,the pairs of multiplications AH ·
BH and CH · DH are performed using the 9-word
dual multiplication algorithm by a dual multiplier
with 288-bit operand length. The operands (AH +
AL), (BH +BL), (CH +CL), (DH +DL) are 320-bits
(10 words) long. Thus, the pairs the multiplications
(AH + AL)(BH + BL) and (CH + CL)(DH + DL)
are performed using the 10-word dual multiplication
algorithm that uses a dual multiplier with 320-bit
operand length.

Algorithm 2 Dual Karatsuba multiplications for 521-bit

Input: Four 17-word operands A = AH ||AL, B =
BH ||BL and C = CH ||CL, D = DH ||DL (each word con-
sists of 32 bits).
Output: M = A · B and N = C ·D with the length of
34 words (each word consists of 32 bits).

1: ML = AL ·BL and NL = CL ·DL {NEON, 256bit}
2: MH = AH ·BH and NH = CH ·DH {NEON, 288bit}

3: AHL = (AH +AL), BHL = (BH +BL) {C, 320bit}
4: CHL = (CH + CL), DHL = (DH +DL) {C, 320bit}
5: MM = AHL · BHL and NM = CHL · DHL {NEON,

320bit}
6: M = MH · 2521 +(MM −MH −ML) · 2256 +ML {C}
7: N = NH · 2521 + (NM −NH −NL) · 2256 +NL {C}

4.4 Point Arithmetic Algorithms on El-
liptic Curves

As presented in the study [2], the algorithms for adding
and doubling points on the Jacobi coordinates use the
multiplication and squaring operations. As we analyzed
in the previous section, we can use the dual multiplica-
tion algorithms to perform the pairs of multiplications in
parallel for the pairs of multiplications on Fp, whose data
do not depend on each other... This principle can also be
applied to the squarings. To simplify the implementation
process, we do not implement the dual squarings (i.e.,
parallelizing two squarings). Instead, we use the dual
multiplication to perform two squarings in parallel. In

the following section, the paper presents several improve-
ments for the point addition and doubling algorithms that
originally presented in the paper [2].

4.4.1 Point Addition Algorithm

Algorithm 3 presented in the paper [2] is a point addi-
tion algorithm using the ”add-2007-bl” formula with the
sequential multiplication.

Algorithm 3 Point adding using the sequential multipli-
cation algorithm [2]

Input: P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) represented
in Jacobi coordinates.
Output: P3 = P1 + P2 = (X3, Y3, Z3).

1: T1 = Z2
1

2: T2 = Z2
2

3: U1 = X1 · T1

4: U2 = X2 · T2

5: S1 = Y1 · Z2 · T2

6: S2 = Y2 · Z1 · T1

7: H = U2 − U1

8: I = (2 ·H)2

9: J = H · I
10: R = 2 · (S2 − S1)
11: V = U1 · I
12: X3 = R2 − J − 2 · V
13: Y3 = R · (V −X3)− 2 · S1 · J
14: Z3 = ((Z1 + Z2)

2 − T1 − T2) ·H

Since the point addition algorithm on the Jacobi coor-
dinates can be decomposed into independent operations,
we can apply the dual multiplication algorithm for this
point addition algorithm. Thus, we propose to improve
Algorithm 3 of the paper [2] by our Algorithm 4 using the
dual multiplication that allows the parallel execution as
follow. In Algorithm 4, the multiplications and squarings
are organized into pairs of multiplications and pairs of
squarings whose data are independent of each other. We
can see that Algorithm 4 is equivalent to Algorithm 3,
except that Algorithm 4 leverages the parallel execution.

4.4.2 Point Doubling Algorithm

Algorithm 5 described below is a point doubling algo-
rithm using the formula “dbl-2001-b” as presented in the
paper [2], which use the sequential multiplication.

Similar to point addition, the point doubling on the
Jacobi coordinates can be decomposed into independent
operations. Therefore, we can apply the dual multipli-
cation algorithm for the point doubling algorithm. We
propose to improve Algorithm 5 of the paper [2] by our
Algorithm 6 using the double multiplication that allows
the parallel execution as follow.

From the implementation of the steps, we can see that
our Algorithm 6 is equivalent to Algorithm 5 of [2]. How-
ever, our Algorithm 6 differs from Algorithm 5 by lever-
aging the parallel execution.

International Journal of Network Security(VDOI: 1816-3548-2022-00001) 9

Algorithm 4 Adding two points using SIMD-based dual
multiplication algorithm

Input: P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) represented
in Jacobi coordinates.
Output: P3 = P1 + P2 = (X3, Y3, Z3).

1: T1 = Z2
1 , T2 = Z2

2 {NEON}
2: U1 = X1 · T1, U2 = X2 · T2 {NEON}
3: S1 = Z2 · T2, S2 = Z1 cotT1 {NEON}
4: S1 = Y1 · S1, S2 = Y2 · S2 {NEON}
5: H = U2 − U1 {C}
6: I = 2 ·H {C}
7: I = I2, T3 = R2 {NEON}
8: J = H · I, V = U1 · I {NEON}
9: R = 2 · (S2 − S1) {C}

10: X3 = T3 − J − 2 · V {C}
11: T3 = V −X3 {C}
12: T3 = R · T3, T4 = S1 · J {NEON}
13: Y3 = T3 − 2 · T4 {C}
14: Z3 = ((Z1 + Z2)

2 − T1 − T2) ·H {C}

Algorithm 5 Point doubling using the sequential multi-
plication algorithm [2]

Input: P1 = (X1, Y1, Z1) represented in Jacobi coordi-
nates.
Output: P3 = 2 · P1 = (X3, Y3, Z3).

1: T0 = delta = Z2
1

2: T1 = gamma = Y 2
1

3: T2 = beta = X1 · T1

4: T3 = X1 − T0

5: T4 = X1 + T0

6: T3 = alpha = 3 · T3 · T4

7: X3 = T 2
3 − 8 · T2

8: Z3 = (Y1 + Z1)
2 − T1 − T0

9: Y3 = T3 · (4 · T2 −X3)− 8 · T 2
1

Algorithm 6 Point doubling using the sequential multi-
plication algorithm [2]

Input: P1 = (X1, Y1, Z1) represented in Jacobi coordi-
nates.
Output: P3 = 2 · P1 = (X3, Y3, Z3).

1: T0 = delta = Z2
1 , T1 = gamma = Y 2

1 {NEON}
2: T3 = X1 − T0 {C}
3: T4 = X1 + T0 {C}
4: T2 = beta = X1 · T1, T3 = T3 · T4 {NEON}
5: T3 = alpha = 3 · T3 {C}
6: T5 = Y1 + Z1 {C}
7: T4 = T 2

3 ; T5 = T 2
5 {NEON}

8: X3 = T4 − 8 · T2 {C}
9: Z3 = T5 − T1 − T0 {C}

10: T4 = 4 · T2 −X3 {C}
11: T4 = T3 · T4, T5 = T 2

1 {NEON}
12: Y3 = T4 − 8 · T5 {C}

4.4.3 Comparison of the proposed algorithms
with the original algorithms

For the comparison of our parallel algorithm with the se-
quential algorithm [2], we use the following notations. We
denote M , S as the cost of the conventional multiplica-
tion and squaring, and Mt, St as the cost of the dual
multiplication according to the proposed algorithms.

The cost of the point addition according to the sequen-
tial model [2] (i.e., Algorithm 3) is 11M + 5S, while the
cost of our proposed addition algorithm (i.e., Algorithm 4)
is 5Mt+ 2St+ 1M + 1S. Since Mt < 2M and Mt < 2S,
we can see that the cost of the proposed algorithm (i.e.,
Algorithm 4) is more efficient than the cost of the point
addition algorithm presented in [2] (i.e, the Algorithm 3).

Table 4: Comparison of the costs of the algorithms

Algorithm
Cost of the point operation

Cost of the
point addition

Cost of the
point doubling

Sequential algo-
rithm [2]

11M + 5S 3M + 5S

Our proposed paral-
lel algorithm

5Mt + 2St +
1M + 1S

4Mt

For the point doubling algorithms, the cost of the se-
quential point doubling [2] (i.e., Algorithm 5) is 3M+5S,
while the cost of the proposed point doubling (i.e., Al-
gorithm 6) is 4Mt. Thus, the cost of the proposed algo-
rithm (i.e., Algorithm 6) is more efficient than the cost of
the point doubling algorithm presented in [2] (i.e., Algo-
rithm 5).

Table 4 shows the comparison of the costs of the men-
tioned algorithms.

4.4.4 Scalar Point Multiplication

For the scalar point multiplication, we use the sliding win-
dow NAF algorithm to multiply a positive integer by a
point. In this scalar point multiplication, our algorithm
uses the point addition and the point doubling according
to Algorithms 4 and 6 based on the SIMD dual multipli-
cation.

5 Experiments and Evaluations

5.1 Experiment Settings

The following tests are performed on ARMv7 and ARMv8
processors with the integrated NEON component. The
NEON [1] instructions are used to perform two multipli-
cations in parallel including:

- vmlal u32 (for multiplying and accumulating un-
signed integers in the vector form):
For Q0 = vmlal u32(Q0, D2, D3[0]), we calculate

D1 = D1 +D2[1]×D3[0] and

International Journal of Network Security(VDOI: 1816-3548-2022-00001) 10

D0 = D0 +D2[0]×D3[0].

- vshrq n u64 (to right shift the vector by n bits)):
For Q0 = vshrq n u64(Q0, 32), we calculate

D0 = D0 ≫ 32 and D1 = D1 ≫ 32.

- vaddq u64 (to perform addition in vector form):
For Q0 = vaddq u64(Q0, Q1), we calculate

D0 = D0 +D2 and D1 = D1 +D3.

- vandq u64 (to perform AND operation in vector
form):
For Q0 = vandq u64(Q0, Q1), we calculate

D0 = D0&D2 and D1 = D1&D3.

- vmovn u64 (to transfer vector data in narrow mode)
For D0 = vmovn u64(Q1), we calculate

D0[0] = D2[0] and D0[1] = D3[0].

- vld1 u32 (to load data from memory into registers in
NEON)
For D0 = vld1 u32([N]), we calculate

D0[0] = [N] and D0[1] = [N + 1].

- vget lane u32 (to copy data from NEON registers to
memory)
For R1 = vget lane u32(D0, 0), we calculate

R1 = D0[0].

For R2 = vget lane u32(D0, 1), we calculate

R2 = D0[1].

Based on the above instructions, we implement the dual
multiplication algorithm, the point addition algorithm,
and the point doubling algorithm as described in the sec-
tion 4 based on the RELIC cryptographic library version
0.5.0. The RELIC is a cryptographic library that is con-
sidered to have a fairly fast execution speed among other
open source cryptographic libraries such as OpenSSL and
GMP. Next, we performed experiments and evaluated the
results between the library that integrates the proposed
improvements and the original library that uses the de-
fault algorithm. To measure the time of an operation, we
take the average number of 100 executions of that opera-
tion.

5.2 Experiments on ARMv7

The following experiment results are performed on the
hardware platform: a Xilinx Zynq Kit with the ARMv7
1.3 GHz processor running an embedded Linux operat-
ing system. The development tool used for compiling the
program is arm-xilinx-linux-gnueabi-gcc version 4.8.3. We

performed tests for the proposed multiplication algorithm
on three curves: Curve NIST-P256, Curve NIST-P384,
and Curve NIST-P521.

The experiment results with ARMv7 are presented in
Tables 5, 6, and 7. Table 5 shows the results of perform-
ing the arithmetic operations on Fp. Table 6 presents
the results for performing the point arithmetic operations
on the curve E(Fp). Table 7 depicts the results with
the cryptographic primitive functions based on the E(Fp)
curves.

Table 5 shows the comparative evaluation test between
the time for performing a dual multiplication and the time
for performing two multiplications (Mul) or two squar-
ings (Sqr) sequentially (i.e., the default operation using
the RELIC library). The last column indicates the ratio
(i.e., the efficiency). As shown in Table 5, the proposed
algorithm is faster than the default algorithms using the
RELIC library, namely 30% and 20% faster for the mul-
tiplications and squarings, repectively.

Table 6 presents the comparative evaluation test be-
tween the execution time of the point addition (Add), the
point doubling (Dbl) and the scalar point multiplication
(k · P) of the proposed algorithm with that of the de-
fault operations using the RELIC library. The results in
the last column show that, the proposed algorithm (i.e.,
using the NEON component) provides results of 20% to
30% faster than the default algorithm using the RELIC
library.

Table 7 shows the performance evaluation for two cryp-
tographic protocols (ECDH, ECDSA) using our proposed
algorithm (i.e., the algorithm based on NEON) and the al-
gorithm using the original RELIC library. On the ARMv7
platform, the performance of the proposed algorithms for
ECDH and ECDSA protocols increases by 10% to 20%
compared to the original algorithms.

5.3 Experiments on ARMv8

The following experiment results are performed on the
hardware platform: a NXP IMX8M Kit with the ARMv8
1.5 GHz processor running an Android 10 operating sys-
tem. We use the Android development tool NDK (Stan-
dalone toolchains) to compile the programs with GCC
compiler version 6.3. We performed tests for the pro-
posed multiplication algorithm on three curves: Curve
NIST-P256, Curve NIST-P384, and Curve NIST-P521.

The experiment results with ARMv8 are presented in
Tables 8, 9, and 10. Table 8 shows the results for per-
forming the arithmetic operations on Fp. Table 9 presents
the results for performing the point arithmetic operations
on the curve E(Fp). Table 10 indicates the results with
the cryptographic primitive functions based on the E(Fp)
curves.

Table 8 shows the comparative evaluation test between
the time for performing a dual multiplication and the time
for performing two multiplications (Mul) or two squar-
ings (Sqr) sequentially (i.e., the default operation using
the RELIC library). The results in the last column show

International Journal of Network Security(VDOI: 1816-3548-2022-00001) 11

Table 5: Arithmetic operations on Fp with ARMv7

Bit
Length

—
Arithmetic
operations
on Fp

Time (103 nanoseconds)
Ratio

Dual
multipli-
cation

Sequential
multipli-
cation

256
Mul 4.9 6.9 0.71
Sqr 4.9 6.3 0.78

384
Mul 9.2 13.5 0.68
Sqr 9.2 13.0 0.71

521
Mul 19.6 28.6 0.69
Sqr 19.6 28 0.70

Table 6: Point arithmetic operations on the curve E(Fp)
with ARMv7

Bit
Length

—
Arithmetic
operations
on Fp

Time (103 nanoseconds)
Ratio

Dual
multipli-
cation

Sequential
multipli-
cation

256
Add 43 57.2 0.75
Dbl 21.8 30.3 0.72
k · P 8742 10770 0.81

384
Add 81.5 107.8 0.76
Dbl 40.6 57.3 0.71
k · P 23672 29476 0.80

521
Add 176.5 238.5 0.74
Dbl 87.8 125.2 0.70
k · P 68243 85689 0.80

Table 7: E(Fp)-based cryptographic primitives with
ARMv7

Bit
Length

—
Protocols
based on
E(Fp)

Time (103 nanoseconds)
Ratio

SIMD Sequential
multipli-
cation

256
ECDH 9.0 11.2 0.8
ECDSA Sig 4.9 5.3 0.92
ECDSA Ver 12.6 14.7 0.86

384
ECDH 23.4 29.3 0.80
ECDSA Sig 12.6 13.6 0.93
ECDSA Ver 32.5 37.3 0.87

521
ECDH 69.4 86.9 0.80
ECDSA Sig 36.1 39.3 0.92
ECDSA Ver 74.8 85.0 0.88

Table 8: Arithmetic operations on Fp with ARMv8

Bit
Length

—
Arithmetic
operations
on Fp

Time (103 nanoseconds)
Ratio

Dual
multipli-
cation

Sequential
multipli-
cation

256
Mul 1.8 2.9 0.62
Sqr 1.8 2.4 0.75

384
Mul 3.6 6.1 0.60
Sqr 3.6 5.1 0.71

521
Mul 8.4 13.8 0.61
Sqr 8.4 11.0 0.76

that, the proposed algorithm is faster than the default al-
gorithm using the RELIC library, namely 40% and 25%
faster for the multiplications and squarings, repectively.

Table 5 presents the comparative evaluation test be-
tween the execution time of the point addition (Add), the
point doubling (Dbl) and the scalar point multiplication
(k ·P) of the proposed algorithm with that of the default
operations using the RELIC library. The results in the
last column show that, the proposed algorithm (i.e. the
algorithm using the NEON component) is about 20% to
30% faster than the default algorithm using the RELIC
library.

Table 9: Point arithmetic operations on the curve E(Fp)
with ARMv8

Bit
Length

—
Arithmetic
operations
on Fp

Time (103 nanoseconds)
Ratio

Dual
multipli-
cation

Sequential
multipli-
cation

256
Add 16.2 22.8 0.71
Dbl 8.4 12.2 0.69
k · P 3376 4149 0.81

384
Add 32.7 47.6 0.69
Dbl 17.5 24.0 0.73
k · P 9645 12409 0.78

521
Add 74.9 100.8 0.74
Dbl 37.6 50.3 0.75
k · P 28696 34825 0.82

Table 10 shows the evaluation of the performance of
two cryptographic protocols (ECDH, ECDSA) using our
proposed algorithm (based on NEON) and the original
protocol implemented in the RELIC library. On the
ARMv8 platform, the performance of the proposed al-
gorithms for ECDH and ECDSA protocols increases by
10% to 20% compared to the original algorithms.

Table 10: E(Fp)-based cryptographic primitives with
ARMv8

Bit
Length

—
Protocols
based on
E(Fp)

Time (103 nanoseconds)
Ratio

SIMD Sequential
multipli-
cation

256
ECDH 3.4 4.2 0.81
ECDSA Sig 1.8 2.0 0.90
ECDSA Ver 4.7 5.5 0.85

384
ECDH 9.7 12.6 0.77
ECDSA Sig 5.1 5.8 0.88
ECDSA Ver 13.0 16.0 0.81

521
ECDH 28.6 34.8 0.82
ECDSA Sig 14.7 16.0 0.92
ECDSA Ver 37.1 42.9 0.86

International Journal of Network Security(VDOI: 1816-3548-2022-00001) 12

6 Conclusions

Techniques for improving the efficiency of the point arith-
metic operations, especially the computational speed, is
always a challenge for the elliptic curve cryptosystems us-
ing hardware platforms with low processing power. The
traditional Karatsuba algorithm allows multiplying inte-
gers with low computational complexity and fast speed.
However, it is difficult to implement the algorithm on pro-
cessors with the limited performance. Several studies fo-
cused on reducing the number of operations, and thus,
the cost of computation. The application of the SIMD
architecture with the NEON component can provide the
possibility for calculations in parallel. In addition, we can
leverage the hardware characteristics to reduce the num-
ber of intermediate calculations, as well as combine the
Karatsuba algorithm with advanded hardware platforms
such as ARM. However, this approach has not yet been
fully investigated.

This paper proposes a method for improving the ef-
ficiency of the arithmetic operations including the point
addition, doubling and scalar point multiplication on el-
liptic curves using the ARM hardware characteristics and
the NEON. In this method, we combine the operand
scanning multiplication with the Karatsuba algorithm.
The proposed method performs the parallel multiplica-
tion (the dual multiplications) together with the multi-
plication pairing to minimize the cost of data read/write
operations between the memory and the NEON. Further-
more, we use an available large number library to speed up
the computation. We proposed several algorithms to im-
plement the method on ARMv7 and ARM v8 embedded
processors. The algorithms are fully integrated into the
computations of the EDCH and ECDSA protocols on the
GF (p) fields with sizes of 256, 384, and 521 bits. Exper-
imental results shown that the efficiency of the proposed
algorithms increases from 20% to 30% for the basic oper-
ations (including the point addition, doubling, and scalar
point multiplication), and increases from 10% to 20% for
the calculations in the ECDH and ECDSA protocols in
comparison with the previous method.

Further extensions of this work can be the improved
parallelization by combining the interleavedg ARM in-
structions and the SIMD instructions, or the adaption of
the algorithms to the other ARM-Cortex processor fami-
lies.

References

[1] ARM, “Series programmer’s guide,” Technical Re-
port Cortex-A, 2012.

[2] D. J. Bernstein, T. Lange, and et al., “Explicit-
formulas database,” Jan. 27, 2022. (https://
hyperelliptic.org/EFD/)

[3] D. J. Bernstein and P. Schwabe, “Neon crypto,”
in Proceedings of International Workshop on
Cryptographic Hardware and Embedded Systems
(CHES’12), pp. 320–339, Springer, 2012.

[4] J. W. Bos, P. L. Montgomery, D. Shumow, and G. M.
Zaverucha, “Montgomery multiplication using vec-
tor instructions,” in Proceedings of Conference Se-
lected Areas in Cryptography (SAC’13), pp. 471–489,
Springer, 2013.

[5] D. Câmara, C. P. Gouvêa, J. López, and R. Da-
hab, “Fast software polynomial multiplication on
arm processors using the neon engine,” in Proceed-
ings of International Conference on Security Engi-
neering and Intelligence Informatics, pp. 137–154,
Springer, 2013.

[6] P. G. Comba, “Exponentiation cryptosystems on
the ibm pc,” IBM Systems Journal, vol. 29, no. 4,
pp. 526–538, 1990.

[7] M. S. Hwang, S. F. Tzeng, C. S. Tsai, “General-
ization of proxy signature based on elliptic curves”,
Computer Standards & Interfaces, vol. 26, no. 2, pp.
73–84, 2004.

[8] Intel Corporation, “Using streaming simd extensions
(SSE2) to perform big multiplications,” Technical
Report Application note AP-941, July 2000.

[9] A. Faz-Hernandez, P. Longa, and A. H. Sanchez, “Ef-
ficient and secure algorithms for GLV-based scalar
multiplication and their implementation on GLV-
GLS curves,” in Proceedings of RSA Conference:
Topics in Cryptology CT-RSA, pp. 1–27, Springer,
2014.

[10] D. Hankerson, A. Menezes, and S. Vanstone, Guide
to Elliptic Curve Cryptography, Berlin: Springer-
Verlag, 2004.

[11] H. Cheng, J. Grosschaedl, J. Tian, P. B. Ronne, and
P. Y. Ryan, “High-throughput elliptic curve cryp-
tography using avx2 vector instructions,” in Interna-
tional Conference on Selected Areas in Cryptography
(SAC’20), pp. 698–719, Springer, 2020.

[12] C. Y. Lee, C. C. Fan, J. Xie, and S. M. Yuan, “Ef-
ficient implementation of karatsuba algorithm based
three-operand multiplication over binary extension
field,” IEEE Access, vol. 6, pp. 38234–38242, 2018.

[13] S. G. Liu, S. J. An, and Y. W. Du, “Efficient and
secure elliptic curve scalar multiplication based on
quadruple-and-add,” International Journal of Net-
work Security, vol. 23, no. 5, pp. 750–757, 2021.

[14] S. G. Liu, Y. Y. Hu, and L. Wei, “Elliptic curve
scalar multiplication algorithm based on side channel
atomic block over GF(2m),” International Journal of
Network Security, vol. 23, no. 6, pp. 1005–1011, 2021.

[15] Z. Liu, J. Groschdl, Z. Hu, K. Jrvinen, H. Wang, and
I. Verbauwhede, “Elliptic curve cryptography with
efficiently computable endomorphisms and its hard-
ware implementations for the internet of things,”
IEEE Transaction on Computers, vol. 66, no. 5,
p. 773–785, 2017.

[16] L. Kowada, R. Portugal, and C. M. H. Figueiredo,
“Reversible karatsuba’s algorithm,” Journal of Uni-
versal Computer Science, vol. 12, no. 5, pp. 499–511,
2006.

https://hyperelliptic.org/EFD/
https://hyperelliptic.org/EFD/

International Journal of Network Security(VDOI: 1816-3548-2022-00001) 13

[17] P. Longa, “Fourqneon: Faster elliptic curve scalar
multiplications on arm processors,” in Proceed-
ings of Conference Selected Areas in Cryptography
(SAC’16), pp. 501–519, Springer, 2016.

[18] P. V. Luc, H. D. Hai, and L. D. Tan, “Multi-
layer multiplication in binary field on armv8 proces-
sors,” in Proceedings of IEEE International Confer-
ence on Advanced Technologies for Communications
(ATC’20), Nhatrang, Vietnam, 2020.

[19] P. V. Luc, V. T. Linh, H. D. Hai, and L. D. Tan,
“Fast binary field mutiplication on armv7 embed-
ded processors,” in Proceedings of 4th IEEE Interna-
tional Conference on Recent Advances in Signal Pro-
cessing, Telecommunications & Computing (SigTel-
Com’20), Hanoi, Vietnam, 2020.

[20] R. C. Marquez, A. J. C. Sarmiento, and S. Sánchez-
Solano, “Speeding up elliptic curve arithmetic on
arm processors using neon instructions,” RIELACy,
vol. 41, no. 3, pp. 1–20, 2020.

[21] A. Menezes, P. van Oorschot, and S. Vanstone, Hand-
book of Applied Cryptography, CRC Press, 1996.

[22] National Institute of Standards and Technology
(NIST), “DSS digital signature standard (DSS),”
Technical Report Federal Information Processing
Standards Publication 186-2, 2000.

[23] National Institute of Standards and Technology
(NIST), “Recommendation for pair-wise key-
establishment schemes using discrete logarithm cryp-
tography,” Technical Report SP 800-56A Rev. 3,
Apr. 2018.

[24] H. Seo, Z. Liu, J. Choi, and H. Kim, “Karatsuba-
block-comb technique for elliptic curve cryptography
over binary fields,” Journal of Security and Com-
munication Networks, vol. 8, no. 17, pp. 3121–3130,
2015.

[25] H. Seo, Z. Liu, J. Grobschadl, J. Choi, and
H. Kim, “Montgomery modular multiplication on
arm-neon revisited,” in Proceedings of International
Conference on Information Security and Cryptology
(ICISC’14), pp. 328–342, Springer, Cham, 2015.

[26] A. H. Sánchez and F. Rodŕıguez-Henŕıquez, “Neon
implementation of an attribute based encryption
scheme,” in Proceedings of International Confer-
ence on Applied Cryptography and Network Security,
(ACNS’13), pp. 322–338, Springer, 2013.

[27] IEEE Standards, “Standard specifications for public
key cryptography,” Technical Report of IEEE 1363-
2000, 2004.

[28] A. Weimerskirch and C. Paar, “Generalizations
of the karatsuba algorithmfor efficient implementa-
tions,” Technical Report of University of Ruhr,
Bochum, Germany, 2003.

[29] C. C. Yang, T. Y. Chang, M. S. Hwang, “A new
anonymous conference key distribution system based
on the elliptic curve discrete logarithm problem”,
Computer Standards and Interfaces, vol. 25, no. 2,
pp. 141–145, 2003.

Biography

Pham Van Luc received master’s degree in crypto-
graphic techniques in 2008. His research interests include
Analysis and Design of Security Protocols, and Applied
Cryptography.

Dang Hai Hoang, Dr.-Ing. (1999), Dr.-Ing.habil.
(2002) in telematics and communication systems from
Technical University of Ilmenau, Germany; Associate
Professor at Posts and Telecommunications Institute of
Technology, Hanoi, Vietnam. His current research inter-
ests include information security, communication proto-
cols, communication systems, QoS mechanisms, and con-
trol systems..

Leu Duc Tan received his PhD in cryptographic tech-
niques in 1992. His research interests include Analysis and
Design of Security Protocols, and Cryptographic Theory.

	Introduction
	Related Work
	Elliptic Curves on Finite Fields
	Affine Coordinates
	Projective Coordinates
	Point Addition
	Point doubling
	Scalar Multiplications on Elliptic Curve

	A Method for Improving the Efficiency of Point Arithmetic Operations
	The Implementation Model
	The Multiplication of Large Integers on GF(p)
	Operand Scanning Method
	Product Scanning Method

	Parallelization of Two Multiplications on the Field GF(p)
	Instruction Restriction for 256-bit and 384-bit Multiplications
	Evaluating the Number of Instructions for Loading and Storing Data
	Instruction Restriction for 521-bit Multiplications

	Point Arithmetic Algorithms on Elliptic Curves
	Point Addition Algorithm
	Point Doubling Algorithm
	Comparison of the proposed algorithms with the original algorithms
	Scalar Point Multiplication

	Experiments and Evaluations
	Experiment Settings
	Experiments on ARMv7
	Experiments on ARMv8

	Conclusions
	REFERENCES

