
International Journal of Network Security(VDOI: 1816-3548-2022-00003) 1

Fine-grained Access Control Scheme Supporting
Cloud-assisted Write Permission Control in

Cloud-aided E-Health System

Kai He1,3, Ziqi Wang1,3, Jiaoli Shi2, Anyuan Deng2, and Shunlin Lv2

(Corresponding author: Jiaoli Shi)

School of Computer Science and Artificial Intelligence, Wuhan Textile University1

School of Computer and Big Data Science, Jiujiang University2

407081693@qq.com

3 Hubei Clothing Information Engineering Technology Research Center, China3

(Received July 30, 2021; Revised and Accepted Jan. 28, 2022; First Online Apr. 2, 2022)

Abstract

We consider a multi-reader-multi-writer scene in cloud-
aided E-Health systems. Data is produced on all kinds
of medical devices and encrypted to ciphertexts for se-
curity. These pieces of ciphertext would be aggregated
as an electronic medical records file on controllers and
uploaded onto the cloud. Doctors then download and de-
crypt the encrypted file, make diagnoses and treatment
plans, and write them in the encrypted file. Nurses im-
plement real-time treatment plans and record progress in
the same file. This paper proposes a Fine-grained Access
Control Scheme supporting Cloud-assisted Write Permis-
sion Control. In this scheme, multiple authorized users
can read the same file but cannot write files until they
are appropriate. We represent Users’ statuses as a ma-
trix and use a Viète formula to match them with a write
access policy on the cloud to judge whether the user can
modify the file or not.

Keywords: Attribute-based Encryption; Fine-grained Ac-
cess Control; Write Permission Control

1 Introduction

With the fast development of cloud services, cloud-based
PHR (personal health record) systems becomes popular
more and more, such as Google Health and Microsoft
HealthVault. In these PHR systems, lightweight medical
devices and controllers are deployed gradually in hospital
or home, and users can access PHR services anytime and
anywhere. In the scene, most security issues stem from
the plaintext transmission of data. Thus, the data need
to be encrypted to be ciphertext before being sent to the
controller.

These pieces of ciphertext then would be aggregated
as an electronic medical records file on controllers and
uploaded onto the cloud. Doctors then download and

decrypt the encrypted file, make diagnoses and treatment
plans, and write them in the encrypted file. Accordingly,
nurses implement real-time treatment plans and record
progress in the same file. This scenario is called Multi-
Reader-Multi-Writer by us.

It is troublesome to carry out access control over a
wide variety of data generated by all kinds of devices.
Fortunately, ABE (Attribute-Based Encryption) may be
the most suitable method. When the ABE method is
adopted, the judgment of reading permission is in the
user, while the control of write permission is generally
migrated to the cloud server by the owners. On the one
hand, owners want a cloud server to realize aggregating
privilege control. However, on the other hand, the cloud
server cannot get out anything about the ciphertext.

Our contributions can be summarized as follows.

1) We propose a fine-grained access control scheme sup-
porting multiple authorized users to write the same
encrypted medical record file. In this scheme, the en-
crypted file can be read by multiple users who have
authorized read rights and can be modified by some
doctors or nurses who has authorized write rights and
be in an appropriate status (such as at work).

2) We present a representation and matching method of
users’ statuses. Users’ statuses represent as a Matrix
and match on the cloud by using the Viète formula
to judge whether the user can modify the file or not.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 gives the system ar-
chitecture. Section 4 demonstrates the construction. Sec-
tion 5 presents all kinds of analyses. Section 6 demon-
strates the efficiency of our proposed scheme. Finally,
Section 7 concludes the paper. This paper concretizes
the application scenario of our scheme, stores a medical
records file using blockchain, and extends several parts
over its earlier version [2]. These extended parts include

International Journal of Network Security(VDOI: 1816-3548-2022-00003) 2

security model and formal proof, correctness analysis, per-
formance analysis, et al. What is more, and we adjusted
simulation.

2 Related Works

Fugkeaw et al. [4] presented a write access enforcement
mechanism based on the proxy re-encryption method, in
which users may have permission to update files stored on
the cloud. Despite the data owner freeing from encrypting
files to be updated and loading back to the cloud, the
cloud servers asked the user to enter the passphrase to
decrypt and re-encryption file.

Dong et al. [3] designed a SECO (Secure and scalable
data collaboration services) scheme in cloud computing,
in which the latest version of written data was decided
by early in early write principle. Ruj et al. [15] compelled
that data is written by a single user at a time using Claim
Policy. Li et al. [13] only considered the Create-Writing
situation. They divided time into slices and controlled
write permission using Hash chain and signature.

Jahan et al. [7] extended the CP-ABE scheme to sup-
port write operation with coarse-grained write access.
Fugkeaw et al. [5] represented read and write access priv-
ilege as an attribute of a user. Jahan et al. [9] provided
authorized users with fine-grained read/write access with-
out altering access policies specified by data owners.

Lee et al. [11] used attribute-based encryption as Self-
updatable encryption (SUE) and presented revocable-
storage attribute-based encryption (RS-ABE) by combin-
ing user revocation and ciphertext updating functionali-
ties. Yang et al. [19] allow patients’ vital signs to be mea-
sured and aggregated on medical devices and uploaded
on a cloud for storage and healthcare workers access.
They mainly focused on the lightweight break-glass ac-
cess control system and did not investigate the aggre-
gating privilege control. Wang et al. [17] proposed an
RWAC (read and write access control) scheme, in which
the write control was done on a user using the CP-ABE
method. Jahan et al. [8] also agreed on a drawback of
CP-ABE. Users can modify the access policy specified by
the data owner if write operations are incorporated in the
scheme. However, their scheme enabled the users to per-
form write operations without altering the access policy.
Their write control was still done on a user. Alam [1]
mentions five platforms to develop IoT systems using
blockchain technology. They are IOTA, IOTIFY, Exec,
Xage and SONM. IOTA solves various performance lim-
itations of blockchains. IOTIFY provides an online web
solution. Exec helps users’ applications to the benefits
of the cloud used. Xage is a secure IoT blockchain plat-
form for adding automation. SONM is a medium-sized
fog computing platform.

Many Cloud Service Providers (CollateBox, Microsoft
Azure, Windows Azure, Google docs, Amazon S3, etc.)
also allow multiple writers in one file, although most of
them use role-based access control (RBAC), which is a

centralized method to control the access of shared docu-
ments.

3 System Architecture

3.1 System Model

As shown in Figure 1, there are six entities in the system:
AA (attribute authorities), Server (cloud servers), Medi-
cal devices, Controller (the data controller), Reader (data
readers, such as patients or their families), and Writer
(data modifier, such as doctors or nurses). We assume
that: a) AA and Controller are trusted. b) Cloud is semi-
trusted, which will execute all tasks correctly but is curi-
ous about ciphertexts’ content. c) Unauthorized readers
cannot read an out-sourced ciphertext, and unauthorized
writers cannot write a ciphertext. Readers can read the
ciphertext but cannot write it. Writers can read or write
it.

AA (Trusted Attribute Authorities). They gener-
ate a public parameter set, and then generate, is-
sue, revoke and update three keys (a global private
key GSKut

, a global public key GPKut
, and a pri-

vate attribute key SKut) for each user called ut in
this paper. With GSKut , users can make a digital
signature to ensure data integrity. Using the private
key SKut

, Readers can read out-sourced ciphertext if
his/her attributes meet the read policy defined in the
ciphertext. With SKut

, Writers can read and modify
out-sourced ciphertext if his/her attributes meet the
write policy defined in the ciphertext.

Medical Devices. They monitor the body’s various pa-
rameters data (called M by us) and encrypt them
to be Cm by running a certain symmetric encryp-
tion algorithm with a content key Keycontent. The
symmetric key Keycontent was negotiated in advance
between the medical devices and their controllers.

Controller. It receives Cm from medical devices and en-
crypts the content key to Cp by running a CP-ABE
encryption algorithm with a read policy defined by
himself/herself. Next, Controllers defines a write pol-
icy (X,Y) and encrypts it with a part of Cp to Ct.
As a result, the encrypted electronic health record
file (Cm||Cp||Ct) is constructed and uploaded on
Server.

Reader of an Out-Sourced Data. Anyone can down-
load an encrypted electronic health record file from a
cloud server and tries to read it by matching his/her
private key SKut

to the read policy in Cp. If the
match succeeds, he/she can get the content key and
decrypt the encrypted electronic health record file to
the plaintext data M .

Writer of an Out-Sourced Data. Any writer can
download and read a ciphertext if his SKut

matches

International Journal of Network Security(VDOI: 1816-3548-2022-00003) 3

Controller

Cm

Cm|Cp||Ct

Params

Reader

(Patients or their families)

Cm||Cp

tu
SK

AA

tu
SK

Writers

(Doctors or Nurses)

,|| || '
t t iu u nsns Token CmCm||Cp

Medical Devices

Cloud

Medical Records File

Monitoring
Ciphertext

Diagnoses and
Treatment Plans

Record Progress of
Real-time

Treatment Plans

Blockchain

Cm||Cp||Ct

A block in Blockchain

Figure 1: System Model

successfully to the read policy in Cp. Next, he/she
may modify the plaintext data M and encrypts it
to Cm′ with the content key. Then he/she signs
his/her write credential nsut ||Tokenut,nsi with
his/her global private key GSKut and uploads the
result and Cm′ on Server.

Server. The semi-trusted cloud server in cloud-aided
E-health system is always online, stores all en-
crypted electronic health record files submitted by
controllers, and provides data access services any-
time and anywhere. Let nsut denotes the user’s sta-
tus of written data, nsi the status vector of users’
access,Tokenut,nsi the write credential. WhenWriter
uploads a writing request nsut

||Tokenut,nsi ||Cm′,
Server stores the user’s status nsut

, and tries to
match Ct with nsut ||Tokenut,nsi and other users’
statuses saved before. Suppose the match succeeds
(means that the write policy is satisfied), Server up-
dates Cm with Cm′. Otherwise, Server records the
user’s status nsut

and ignores the request. What is
more, Server can be realized by a cluster of multiple
servers not to make a bottleneck or a single point of
failure in the system.

3.2 Security Requirements

Data Confidentiality. Unauthorized users or cloud
servers (which are semi-trusted) should be prevented
from accessing the plaintext of the data. This is be-
cause that they do not have enough attributes to sat-
isfy the read access policy.

Collusion Resistance. Multiple users cannot improve
the ability to decrypt a ciphertext by combining their
attributes. It is assumed that doctors or nurses will
not share their write credentials with others for their
good.

Semi-Hiding and Unpredictability. Cloud servers
will complete the match of the writing policy faith-
fully without knowing the details of write policies or
write credentials. They also cannot predict whether
or not a user’s request writing data is accepted.

3.3 Security Model

We define the security for our scheme in terms of a game
as follows:

Setup.
The challenger runs the algorithm Setup to generate
public parameters params and a master secret key
MSK. Then, he publishes the params to an adver-
sary Λ.

Phase 1.
The adversary Λ can submit a challenge (X∗, Y ∗)
to the challenger, and construct his/her Tokenut,nsi .
When Λ queries User ut on State nsi, the challenger
signs Tokenut,nsi using GSKui

, and issues them to
Λ.

Challenge.
The adversary Λ gives a challenge (X,Y), which must
be satisfied with X∗ ∪X −X∗ ∩X ≥ 2 or Y ∗ ∪ Y −
Y ∗ ∩ Y ≥ 2. Ct is constructed and sent to Λ, and
then matched with Tokenut,nsi .

Phase 2.
Λ can query and construct more Tokenut,nsi , as long
as they do not violate the constraints on the challenge
(X∗, Y ∗).

Guess.
Λ outputs a guess (X∗, Y ∗) of (X,Y).

The advantage of an adversary Λ in this game is de-
fined as:

Pr[X∗ = X ∧ Y ∗ = Y] = 0.5

International Journal of Network Security(VDOI: 1816-3548-2022-00003) 4

This completes the security game.

4 Proposed Scheme

4.1 Overview

When CP-ABE is used to control the access to medical
record files in E-Health systems, the data generated by
monitor devices should be uploaded onto the cloud im-
mediately after being encrypted. The encrypted data is
sent to a controller to be aggregated into a medical record
file. The file is bound with a read policy and a write
policy, uploaded on the cloud, and stored in blockchain.
Then doctors or nurses can download the encrypted med-
ical record file to make diagnoses and treatment plans or
record the progress of real-time treatment plans remotely.
These plans or progress are also uploaded onto the cloud
and stored in the medical record file.

In the above scene, monitor devices, controllers, doc-
tors, or nurses cannot always be online or restore massive
data. Due to their limited storage ability or may only
carry a lightweight mobile terminal,these data are usu-
ally uploaded on the cloud and downloaded when read or
written by users. Then Server can process the written
data by two methods:

1) According to the content of data (the first method).
The data owner verifies and decides the latest version
of written data submitted by multiple users according
to the data content. Based on this method, we con-
struct two collaborative access control schemes (see
the previous research [10]).

2) According to the write access policy of data (the
second method). Server decides the latest version of
written data according to the write policy defined by
Owner. In addition, Owner can specify an arbitrary
on-demand policy to ensure data consistency. Based
on the second method, this work constructs a new
Access Control Scheme supporting Ciphertext Writ-
ing Privilege Management in Cloud-aided E-Health
System.

In our scheme, the writer (doctors or nurses) can
read the monitoring record file, make diagnoses and
treatment plans, and write them in the medical records
file. In contrast, nurses implement real-time treatment
plans and record progress in the same medical records
file. These writers can write these data to the med-
ical records file and form an updated file M ′. Then
they encrypt M ′ to Cm′ by symmetric encryption and
upload the Cm′ on the cloud along with their write
access credentials nsut

||Tokenut,nsi . To prevent imi-
tate attack, these writers sign nsut ||Tokenut,nsi ||Cm′

with their global private key GSKut . Subsequently,
Sign(nsut

||Tokenut,nsi ||Cm′)GSKut
is sent to the cloud

as a writing request.
When the writing request arrives in Server, Server

firstly verifies the signature using the user’s global public

key GPKut
and then matches nsut

||Tokenut,nsi to Ct.
If the match is successful, Server covers Cm with Cm′.
Otherwise, Server ignores the writing request. For conve-
nience, we put aside the realization of concurrent mecha-
nisms. Each write success triggers a blockchain transac-
tion event so that the write operation can be recorded on
blockchain and cannot be tampered with.

To facilitate the research, let us focus on the write priv-
ilege control and make a quick summary. To control the
collaborative writing on a single file by multiple writers,
Controller defines a write policy, constructs Ct by associ-
ating the policy with the ciphertext, and sends Ct and the
ciphertext onto Server together. Server then aids Con-
troller to match the collaborative write policy with the
writer’s write credential when a writer submits a writing
request.

Our scheme addresses two issues:

1) Designing the structure of Ct and the writer’s write
credential.

2) Judging whether or not the writer’s write credential
is satisfied with Ct (that is, match of Ct).

4.2 Structure of Ct

Inspired by [14], we design a new access structure of Ct,
wherein writers’ statuses may be input manually or gen-
erated automatically.

Let ucsd|uasb indicate the relationship between a de-
vice uc and Status sd when another device ua accesses
data in the status sb. Let ucsd|uasb = {−1,+1,∗ }.
ucsd|uasb = −1 indicates that the device ua can access
data in the status sb only if uc has ever been in the
status sd.ucsd|uasb = +1 indicates that ua can access
data in the status sb only if uc is being in the status sd.
sd.ucsd|uasb = ∗ indicates that there is not any constraint
in ucsd when the user ua accesses data in the status sb.

Let Nu denotes the number of writers, Ns the number
of statuses, and N = Nu ·Ns. The access structure can
be described by a matrix Ms (shown in Figure 2).

When the writer ua writes data in the status sb, the
access structure, expressed as a line of Matrix Ms, must
be satisfied by other writers’ statuses. Therefore, we ex-
tract all of the elements of the line of Ms, and construct
a vector −→mlinea,b

, wherein linea,b = (a− 1) ∗Ns+ b.
For instance, let Nu = 3, and Ns = 4. The vec-

tor −→m1 (the first line of Ms) is assumed as: −→m1 =
(1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗). It denotes that User u1
can write the data in Status s1 with independence
of other writers or their statuses. The vector −→m12

(the latest line of Ms) is assumed as: −→m12 =
(−1, ∗,−1, 1, ∗, ∗, ∗, ∗, ∗, ∗,−1, 1). It denotes that the
writer u1 has ever been in the status s1 and the status s3,
the writer u3 has ever been in the status s3, while both
u1 and u3 are being in the status s4, when the writer u3
writes the data in the status s4.

According to different values of −→mline, we construct
three sets: X, Y and P , wherein, the elements of

International Journal of Network Security(VDOI: 1816-3548-2022-00003) 5

1 1 1 1 1 1 1 2 1 1 1 1 1

1 1 1 2 1 1 2 2 1 1 2 1 2

1 1 1 2 1

| | | |

| | | |

| | | |

Ns Nu Ns

Ns Nu Ns

Nu Ns Ns Nu Ns Nu Ns Nu Nm Nu Ns

u s u s u s u s u s u s u s u s

u s u s u s u s u s u s u s u s

u s u s u s u s u s u s u s u s

é ù
ê ú
ê ú
ê ú
ê ú
ë û

ù1 1 1 1| | |1 1 1 1 2 1 1 1 11 1 11 1 1 1 2 1 1 1 11 1 1 1 2 11 1 1 1 2 1 1 1 1u s1 1 1 11 1 1| | || |1 1 1 1 2 1 1 1 11 1 1 1 1 11 1 1 1 2 1 1 1 11 1 1 1 2 1 1 1 11 1 11 1 1 1 1 11 1 1 1 2 1 1 1 1

ú
1 1 1 1 2 1 1 1 1 11 1 1 1 2 1 1 1 11 1 11 1 1 1 2 1 1 1 11 1 1 1 2 1 1 1 11 1 1 1 2 1 1 1 11 1 1 1 2 11 1 1 1 2 1 1 1 1 ùù1 1 1 11 1 1 1 2 1 1 1 11 1 11 1 1 1 2 1 1 1 11 1 1 1 2 11 1 1 1 2 1 1 1 1

ú
| | |u s| | || | ú2 1 1 2 2 1 1 2 1 22 1 1 2 2 1 1 2 11 2 12 1 1 2 2 1 1 2 12 1 1 2 2 1 1 2 12 1 1 2 2 1 1 2 12 1 1 2 2 12 1 1 2 2 1 1 2 1u s1 2 11 2 1| | |2 1 1 2 2 1 1 2 12 1 1 2 2 1 1 2 12 1 1 2 2 1 1 2 12 1 1 2 2 1 1 2 12 1 1 2 2 12 1 1 2 2 1 1 2 12 1 1 2 2 1 1 2 1

úú
u s| | || |

ú
ú
úú
ú

| | | û| | |
s Nu Ns Nu Nm Nu Ns1 1 1 2 11 1 1 | || |1 1 1 2 11 1 1 u s| | || |1 1 1 2 11 1 1 2 1 Nu NNu N

| |1 1 1 2 11 1 11 1 1 2 1

úú
| | |

Figure 2: Access Structure of User Status Constraints

X = {xi} and P = {pk} are respectively the posi-
tions of +1, -1 and * in −→mline. For example, when
−→m12 = (−1, ∗,−1, 1, ∗, ∗, ∗, ∗, ∗, ∗,−1, 1),X = {4, 12},Y =
{1, 3, 11}, and P = {2, 5, 6, 7, 8, 9, 10}.

4.3 Structure of the Write Credential

The write credential is designed as a monitor vector of
a writer status consists with multiple elements of uasb.
uasb = +1 denotes that the writer ua is being in the
status sb, uasb = −1 denotes that the writer ua has ever
been in the status sb, and uasb = 0 denotes that the writer
ua hasn’t ever been in the status sb.

Let r⃗a = (uas1, uas2, · · ·uasNs), and r⃗ =
(r⃗1, r⃗1, · · · r⃗N) can be described as follows.

r⃗ = (u1s1, u1s2, · · ·u1sNs, u2s1, u2s2, · · ·u2sNs,
· · ·uNss1, uNss2, · · ·uNssNs)

The number of elements of r⃗ is N :|r⃗| = N .

For example, r⃗ = (−1,−1, 0, 1,−1, 0, 0, 1, 0,−1,−1, 1).
r⃗1 = (−1,−1, 0, 1) denotes that the writer u1 has ever
been in the status s1 and s2, and is being in the status s4
now.

According to the values of different elements of r⃗,
two sets can be constructed as: X ′ and Y ′. The ele-
ments of X ′ = {xi} are positions of +1 in r⃗, and those
of Y ′ = {yi} are positions of -1 in r⃗. For instance,
r⃗ = (−1,−1, 0, 1,−1, 0, 0, 1, 0,−1,−1, 1), X ′ = {4, 8, 12}
and Y ′ = {1, 2, 5, 10, 11}.

4.4 Intuition of Matching Ct

Whether r⃗ is satisfied to m⃗line is the same as whether
X ⊆ X ′ ∧ Y ⊆ Y ′ is valid, wherein, X ⊆ X ′ is equivalent
to X = X ′−P , and Y ⊆ Y ′ to Y = Y ′−P . In the above
example, X ′ − P = {4, 12}, Y ′ − P = {1, 11}.

Inspired by [14], we use Viète formula on the wildcard
set P to construct a proper coefficient aj in Formula (1).

∏
pτ∈P

(x− pτ) =
np∑
l=0

(al · xl) (1)

where, pτ , al ∈ Z, np denotes the number of elements
in P , and np ≤ N .

The coefficient al can be constructed by Viète For-
mula (2) as follows.

an−t = (−1)t
∑

1≤k1<k2<...<kt≤n

pi1pi2 · · · pit (2)

We can get Formula (3) when replacing x of the above
Formula (1) with i = 1, 2, 3..., nX and cast them up.

∑
i=1,2,3...,nX

∏
pτ∈P

(i− pτ) =
np∑
i=0

(al ·
∑

i=1,2,3...,nX

il) (3)

Based on Formula (3), we construct our scheme.

4.5 Sketch of Scheme

Our scheme includes three parts and four algorithms,
which are described in Figure 3. To keep things simple, we
focus on the write privilege control, especially matching
a write credential to a write policy Ct.

Initialization. AA calls the algorithm Setup to generate
a global public parameter set (params called by us)
and a master private key MSK, and publishes it.
Then AA generates three keys for each user: a global
private key GSKut

, a global public key GPKut
and

a private attribute key SKut
. AA sends GSKut

and
SKut

to User by a key exchange protocol. SKut
is

not marked in Figure 3, because that it was irrelevant
with the write privilege access control.

Write Policy Definition. Owner defines a collabora-
tive write policy, calls the algorithm EncryptCt to
construct Ct, and uploads it onto Server. Server at-
taches Ct behind Cm||Cp, and then Cm||Cp||Ct is
stored.

Data Write. When a user writes data, he/she signs
nsut
||Tokenut,nsi ||Cm′ with his/her global private

key GSKut
, and submits it onto Server. Then Server

verifies nsut
||Tokenut,nsi ||Cm′ with the user’s global

public key GPKut
, and runs the algorithmMatchCt

to match Ct. If the match succeeds, Server accepts
the written data, and updates Cm to Cm′.

4.6 Construction of Our Scheme

In this section, we describe in detail our scheme. As intro-
duced in Section above, our scheme has four algorithms:
Setup, EncryptCt, TokenGen and MatchCt.

International Journal of Network Security(VDOI: 1816-3548-2022-00003) 6

Cm

Cm|Cp||Ct

Params

Cm||Cp

tu
SK

,|| || '
t t iu u nsns Token Cm

CloudReader

Run CP-ABE and

symmetric decryption

algorithm in turn to

read electronic health

record file

RunMatchCt algorithm

to match Ct with writer

credential.

If successful, append

diagnoses and

treatment record

progress to HER block

AA

Run Setup algorithm to

generate public

parameters, and issue

private keys for writers

or readers

Generating monitoring

data, and encrypt it to

Cm by running a

symmetric encryption

algorithm

Medical Devices

Generate write

credential by running

TokenGen algorithm.

Holding the credential,

doctors or nurses can

append diagnoses and

treatment record

progress to HER block

Writer

Encrypt the symmetric

key to Cp using CP-

ABE, and define write

permission policy Ct by

running EncryptCt

algorithm

Controller

tu
SK

Figure 3: Sketch of our scheme

4.6.1 Setup

The algorithm Setup runs on AA. It chooses two group
elements: h0,g ∈ Gq wherein Gq is a group with a
prime order q. It also chooses N + 4 random numbers:
α1, β1, β2, δ, δ1, δ2, ..., δN ∈ Z∗

q , and computes:

Ω1 = e(g, h0)
α1β1 ,

Ω2 = e(g, h0)
α1β2 ,

{hw = hδw0 }Nw=1, {x̃w = gδ
xw }Nw=1, {ỹw = gδ

yw }Nw=1.

Then AA publishes public parameters and stores the mas-
ter secret key MSK as follows:

params = ({hw, x̃w, ỹw}Nw=0, g
α1 ,Ω1,Ω2, q, G, e(., .), g

δ),

MSK = (α1, β1, β2, δ, δ1, δ2, ..., δN)

4.6.2 EncryptCt

The algorithm EncryptCt runs on a controller to con-
struct User Status Constraints, the write policy Ct. The
controller chooses two random numbers µ1, µ2 ∈ Z∗

q , and
constructs Ct as follows.

Ct = (Ct0, {Ct1,w}nP
w=0, {Ct2,w}

nP
w=0, Ct

′, Ct′′),

Ct0 = Ω1
µ1Ω2

µ2 ,

Ct1,w = (hw ·
nX∏

i=1,xw∈X
gi

w·δxw
)aw·(µ1+µ2),

Ct2,w = (hw ·
nY∏

i=1,yw∈Y
gi

w·δyw)aw·(µ1+µ2),

Ct′ = gα1,µ1 ,

Ct′′ = gµ2

Wherein, {aw} is computed by (2). Then the controller
sends Ct onto the cloud, and stores it on the cloud.

4.6.3 TokenGen

The algorithm TokenGen runs on a writer (a doctor or
nurse) to generate a write access credential.

We encrypt the set P concatenating with the content
key Keycontent:

Ĉ = (Keycontent||P) · e(g, g)α·s

We assume that these writers who possess reading per-
mission can get the set P by decrypting policyread. It is
a reasonable assumption because that if writers can get
the plaintext M , they will know which users or statuses
the plaintext M it is related to.

When a writer makes a writing request, he/she com-

putes θ =
nP∑
w=0

δw · aw based on P and Viète formula,

chooses a random number s ∈ Z∗
q , and constructs

Tokenut,nst :

Tokenut,nst =
(
S̃0, S̃1, S̃2, S̃3, S̃4, P

)
,

S̃0 = g
α1·s

θ ,

S̃1 = hs10 ·
∏

i=1,2,··· ,nX

xi∈X′−P

g
s
θ

nP∏
τ=1

(i− pτ) · δxi ,

S̃2 = hα1s2
0 ·

∏
i=1,2,··· ,nX

xi∈X′−P

g
α1·s

θ

nP∏
τ=1

(i− pτ) · δxi ,

S̃2 = hα1s2
0 ·

∏
i=1,2,··· ,nX

xi∈X′−P

g
α1·s

θ

nP∏
τ=1

(i− pτ) · δxi ,

S̃4 = hα1·s2
0

∏
i=1,2,··· ,nY

yi∈Y ′−P

g
α1·s

θ

nP∏
τ=1

(i− pτ) · δyi .

International Journal of Network Security(VDOI: 1816-3548-2022-00003) 7

4.6.4 MatchCt

The algorithm MatchCt runs on Server (any of cloud
servers) to match Ct. Server calculates ρ based on P
by the Viète formula: ρ = {aw}

np

w=0, and computes M1

and M2 as below.

M1 = Ct0

e(S̃0,
nP∏
w=0

(Ct1,w)
aw

)

e(S̃1, Ct′) · e(S̃2, Ct′′)
,

M2 = Ct0

e(S̃0,
nP∏
w=0

(Ct2,w)
aw)

e(S̃3, Ct′) · e(S̃4, Ct′′)

If M1 and M2 are both 1 (M1 = M2 = 1), the writing
policy is satisfied. Otherwise, the cloud server ignores the
writing request.

In our scheme, AA and Server must be online all the
time, but others don’t need to be.

5 Analysis

5.1 Correctness Analysis

The detail analysis is presented as below.

M1 =Ct0

e(S̃0,
nP∏
w=0

(Ct1,w)
aw

)

e(S̃1, Ct′) · e(S̃2, Ct′′)
,

part1
def
= e(S̃0,

nP∏
w=0

(Ct1,w)
aw)

=e

g a1×s
q ,

hq0 × g
nP∑
w=1

(nX∑
i=1

iw×dxi×aw
)m1+m2

=e(g, h0)

α1·s·(µ1+µ2)

· e(g, g)
α1·s

θ ·(µ1+µ2)·
nP∑
w=1

(nX∑
i=1

iw·δxi ·aw
)
,

part2
def
= e(S̃1, Ct

′)

=e

h(s+β1)
0 · g

nX∑
i=1

(
s
θ ·

nP∏
τ=1

(i−pτ)
)
·δxi

, gα1µ1

=e(g, h0)

α1µ1β1 · e(g, h0)s·α1µ1

·e(g, g)
α1µ1·s

θ ·
nX∑
i=1

(nP∏
τ=1

(i−pτ)·δxi

)
,

part3
def
= e(S̃2, Ct

′′)

=e

hα1(s+β2)
0 · g

nX∑
i=1

(
α1s
θ ·

nP∏
τ=1

(i−pτ)
)
·δxi

, gµ2

=e(g, h0)

α1µ2β2 · e(g, h0)s·α1µ2

· e(g, g)
α1µ2·s

θ ·
nX∑
i=1

(nP∏
τ=1

(i−pτ)·δxi

)
,

Ct0 =e(g, h0)
α1β1µ1+α1β2µ2 ,

M1 =e(g, h0)
α1β1µ1+α1β2µ2 ·

e(g, h0)
α1·s·(µ1+µ2)

e(g, h0)
α1β1µ1+α1µ2β2 · e(g, h0)s·α1·(µ1+µ2)

·

e(g, g)
α1·s

θ ·(µ1+µ2)·
nP∑
w=1

(nX∑
i=1

iw·δxi ·aw
)

e(g, g)
α1·s

θ ·(µ1+µ2)·
nX∑
i=1

(nP∏
τ=1

(i−pτ)·δxi

) = 1.

The correctness analysis of our scheme has been finished.

5.2 Security Proof

Decisional q-parallel BDHE Assumption. Deci-
sional q-parallel Bilinear Diffie-Hellman Exponent As-
sumption problem (q-parallel BDHE, for short) can be
recalled as follows.

Choose a group G of prime order p, two random num-
bers a, s ∈ Zp and a random element g ∈ G. If an adver-
sary is given y:

y = (g, gs, ga, ..., ga
q

, ga
q+2

, ..., ga
2q

,

∀1≤j≤q
(
gs·bj , g

a
bj , ..., g

q
bj , g

q+1
bj , ..., g

2q
bj

)
,

∀1≤j,k≤q,k ̸=j
(
g

a·s·bk
bj , ..., g

aq·s·bk
bj

)
)

It is hard to distinguish a valid tuple e(g, ga
q+1·s) ∈ GT

from a random element R in GT .
An algorithm B that outputs z ∈ {0, 1} has advantage

ε in solving Decisional q-parallel BDHE problem if

|Pr
[
B
(
y, T = e(g, g)

aq+1·s
)
= 0
]

−Pr [B (y, T = R) = 0] |ε.

Theorem 1. Suppose that an adversary Λ can find a
polynomial time algorithm Â that can success the game
with the advantage ε.

Proof. Permissions on out-sourced ciphertext should be
read or written for the owner and writers, read for the
readers, neither read nor written for all others. We need
to prove that a reader cannot write the ciphertext. Thus,
we assume that the adversary Λ can read a ciphertext,
but cannot write the ciphertext.

We assume that the adversary Λ chooses a challenge
(X∗,Y ∗), and the (X∗,Y ∗) is compared to (X,Y) with

International Journal of Network Security(VDOI: 1816-3548-2022-00003) 8

two different elements at least. For simplicity, we assume
that X∗ − X = {x̃} and X − X∗ = {x̂}.Our goal is to
prove that the adversary Λ cannot distinguish X∗ and X.

Setup. The challenger issues public pa-
rameters params to Â. params =
({hw}Nw=0, {gw}Nw=1, g

α1 ,Ω1,Ω2, q, G, e(·, ·), gδ)

Phase 1. Â computes θ =
N∑
w=0

δw · aw, and chooses s ∈

Z∗
q , and constructs Tokenut,nst :

Tokenut,nst =
(
S̃0, S̃1, S̃2, S̃3, S̃4, P

)
,

S̃0 = g
α1·s

θ ,

S̃1 = hs10 ·
∏

i = 1, 2, · · · , nX∗

xi ∈ X∗′ − P

g
s
θ

nP∏
τ=1

(i− pτ) · δxi ,

S̃2 = hα1·s2
0

∏
i = 1, 2, · · · , nX∗

xi ∈ X∗′ − P

g
α1·s

θ

nP∏
τ=1

(i− pτ) · δxi ,

S̃3 = hs10 ·
∏

i = 1, 2, · · · , nY ∗

yi ∈ Y ∗′ − P

g
s
θ

nP∏
τ=1

(i− pτ) · δyi ,

S̃4 = hα1·s2
0

∏
i = 1, 2, · · · , nY ∗

yi ∈ Y ∗′ − P

g
α1·s

θ

nP∏
τ=1

(i− pτ) · δyi

Challenge. The challenger constructs and retains a ta-
ble to record (X∗,Y ∗). When the challenge (X∗,Y ∗)
exists in the table, the challenger reconstructs and
returns Ct, otherwise, he/she returns the same Ct as
before.

Ct is matched as follows.

M1 = e(g, g)
α1·s

θ ·(µ1+µ2)(
n
P∑

w=1
iw·δ

⌢
x ·aw−

nP∏
τ=1

(i−pτ)·δx̃)

= e(g, g)

α1·s
θ ·(µ1+µ2)

(
n
P∑

w=1
iw·aw

)
·
(
δ
⌢
x −δx̃

)

Phase 2. Same as Phase 1.

Guess. Let ã be defined as follows.

ã
def
=

α1 · s
θ
· (µ1 + µ2)

(
nP∑
w=1

iw · aw

)

We then have: M1 = e(g, g)
ã·
(
δ
⌢
x −δx̃

)
.

According to Decisional q-parallel DBHE problem, the

adversary Λ cannot distinguish e(g, g)
δ
⌢
x

,e(g, g)
δx̃
, or a

random element R. Correspondingly, he/she cannot dis-
tinguish X∗ or X.

5.3 Features of Matching Ct

The write policy is semi-hidden in our scheme. Firstly, it
consists of five parts: three group elements (Ct0, Ct

′, Ct′′)
and two sets ({Ct1,w}nP

w=0, {Ct2,w}
nP
w=0). These five parts

cannot derive out the corresponding write policy. Sec-
ondly, the algorithm MatchCt can’t leak out a write pol-
icy in the process of matching Ct either. The adversary
can only get the set P . The write policy then holds a
semi− hidden feature.

What’s more, the way of matching holds a notewor-
thy feature: re − usability. It is observed that the con-
struction of Ct is independent of the random numbers µ1

and µ2. Therefore, we can reuse the writing access struc-
ture by refreshing Ct with different µ1 and µ2 after each
successful match: Cloud server chooses a random num-
ber ψ ∈ Z∗

q , and computes: Ct1,w ← (Ct1,w)
ψ
,Ct2,w ←

(Ct2,w)
ψ
, Ct′ ← (Ct′)

ψ
,Ct′′ ← (Ct′′)

ψ
.

As a result, the write policy holds two features: semi−
hidden and reusability. With these two features, our
scheme holds unpredictability. That is to say, a server
can help data owners with writing permission control,
but cannot predict or determine the subsequent writing
request.

5.4 Performance Analysis

In this section, we compare storage and computation
costs to other two classic schemes (DAC-MACS [18] and
Hur’s [6]) on each entity and complete simulations of core
algorithms in our scheme.

5.4.1 Storage Cost Comparison

Table 1 shows the comparison of storage costs. We ignore
the storage cost of random integers like the other two
schemes (DAC-MACS [18] and Hur’s [6]).

Wherein, |p|: Storage cost of an elemental of groups;
na,k: Number of attributes managed by AAk; NA: Num-
ber of AAs in the scheme; na,k,ut

: Number of attributes
distributed by AAk to ui; nut,k: Number of users man-
aged by AAk; tr : Number attributes of the access tree
TreeRead assigned by each owner; np: Number of wild-
cards in a vector of constraint of access structure; N :
Number of elements in the constraint access structure.

In our scheme, AAk stores {hw}Nw=0, {gw}Nw=1, g
α1 , Ω1,

Ω2, which equals N |p|, N |p|, |p|, |p| and |p| respectively.
The storage costs on both owner and user are the same
as that of our previous work [10]. The storage cost of
Ct on cloud is Ct0, {Ct1,w}

np

w=0, {Ct2,w}
np

w=0, Ct
′ and

Ct′′, which equals |p|, nP |p|,nP |p|, |p| and |p| respectively.
Compared to existing schemes, our scheme spends less
storage cost on each user. But that on AAk and cloud
is the most because we have taken multi-writer access
control into account, while they did not.

International Journal of Network Security(VDOI: 1816-3548-2022-00003) 9

Table 1: Comparison of storage cost (|p|)

DAC-MACS Hur’s Our previous work Our Scheme

AAk na,k + 3 na,k + 3 (1 +
NA∑
k=1

na,k) |p| 4+2N

Owner 3NA + 1 +
NA∑
k=1

na,k 2NA +
NA∑
k=1

na,k (3 + 2
NA∑
k=1

na,k,ut
) |p| 1 +

NA∑
k=1

(na,k)

User 1 + 2
NA∑
k=1

na,k,ut
3NA + 1 +

NA∑
k=1

na,k,ut
(na,k + 3 + nut,k) |p| 1 +

NA∑
k=1

na,k,ut

Cloud 3 + 3tr 3 + 3tr (3 + 2t) |p| 5 + 2tr + 2nP

5.4.2 Computation Cost Comparison

Table 2 gives out the computation cost comparison of the
core algorithms. We ignore the computation cost of mul-
tiplying and dividing like the other two schemes (DAC-
MACS [18] and Hur’s [6]).
|E|: Exponent arithmetic; |Pe|: An e(g, g) bilinear

mapping operation; k: Number of attributes of a user’s
private key; IAk

: Attribute set in a ciphertext issued by
AAk; nP : Number of elements in a wildcard set P ; nX :
Number of elements in a status set X; nY : Number of
elements in a status set Y .

As shown in Table 2, the running time of the algorithm
Setup is proportional to M (the number of statuses). The
algorithm EncryptCt runs on each owner to construct Ct,
which need (6 + nX + nY)|E|. Algorithm MatchCt runs
on Server to match Ct, which needs (2nP)|E|+ 6|Pe|. It
is related with N (the number of users). Compared to
the other two schemes, our scheme works for multi-writer
access control, but those of DAC-MACS [18] and Hur’s [6]
for a single user is an extra cost.

We can replace users’ identities with an attribute set to
reduce delay time if the number of attribute sets is lesser
than the number of users’ identities. This replacement
can extend our scheme to a larger scale.

6 Simulation

We complete the simulation on Ubuntu system with an
Intel Core i7 10th Gen CPU. The Pairing-Based Cryptog-
raphy library is installed onto Ubuntu to simulate all of
the algorithms. The elliptic curve is chosen as, the order
of all groups as 160 bit, and the field size as 512bit. Times
are the mean of 10 trials to avoid the results of accidents.

Figure 4 (a) gives out the computational time compar-
ison between Hur’s [6], Li’s [12], Teng’s [16], and ours. It
shows that the encrypting time spent on a controller is
similar to these two schemes, Hur’s [6] and Li’s [12]. We
have joined the data sharing and aggregating scheme by

writing privilege permission control with a negligible per-
formance impact. Figure 4(b), (c) and (d) show that the
computational costs spent on each entity are remarkably
correlated linearly with n P without depend on n X or
n Y . It is worth knowing that the write policy and token
can be generated on a controller and a writer separately
ahead of time. The computational delay spent on token
matching are almost 50 ms, which falls within the user
acceptable dealing tolerance range. This simulation gives
the feasibility of this scheme.

7 Conclusion

This paper analyzes the control requirements when mul-
tiple doctors or nurses collaboratively write the same en-
crypted data in Cloud-aided E-Health scene. In response
to these requirements, we propose an Access Control
Scheme supporting Ciphertext Writing Privilege Manage-
ment in Cloud-aided E-Health System by expressing a
write access control policy as Matrix. Our scheme has
two noteworthy features:

1) Fine-grained write privilege control. Authorized doc-
tors or nurses can write data legally only when
his/her write credential satisfies the write policy de-
fined by the data’s controller, while unauthorized
users cannot.

2) Data-binding-policy access control method. The out-
sourced data is bound to a collaborative write policy
before being stored on the cloud. The policy can be
on-demand now that it is defined by the data owner,
bringing flexibility to our scheme.

Acknowledgments

This work is supported by the National Science Founda-
tion of China (No. 62062045), the Science and Technol-
ogy Research Project of Jiangxi Provincial of Education

International Journal of Network Security(VDOI: 1816-3548-2022-00003) 10

Table 2: Computational cost comparison

EncryptData DecryptData DecryptData EncryptCt MatchCt

on controller on User on Cloud on controller on Server

DAC-MACS (3 + 6tr)|E| |E|
NA × ((

IAk∑
k=1

(3|Pe|+ |E|))

+2|Pe|
- -

Hur’s (2 + 2tr)|E|
(k + logtr)|E|
+(2k + 1)|Pe|

0 - -

Our previous work (2 + 2tr)|E| |E|+ |P | (k + logtr)|E|+ (2k)|Pe| - -

Our Scheme (6 + nX + nY)|E| (2nP)|E|+ 6|Pe|

 ! "! #! $! %!

!

 !

"!

#!

$!

%!

&!

'!

!
"
#
$
"
%
&

 !"#$%&'(&)**%+#!*$,&+-&)-&)..$,,&.'-*%'/&*%$$

&0!%&1.2$"$

&3+&1.2$"$

&4$-5&1.2$"$

&6!%&1.2$"$

7-.%89*+'-&'-&)-&:)*)&';-$% .'-*%'//$%&+-&'!%&,.2$"$

(a)Compare with other schemes

10 20 30 40 50
0

10

20

30

40

50

60
Computational cost on each entities in our scheme

Ti
m
e(
m
s)

n_X increase when n_P=60

 Write Policy Generating on a controller
 Token Generating on a writer
 Token Matching on cloud

(b)n X is changing when n P=60

10 20 30 40 50 60
0

10

20

30

40

50

60
Computational cost on each entities in our scheme

Ti
m
e(
m
s)

n_P increase when n_X=5

 Write Policy Generating on a controller
 Token Generating on a writer
 Token Matching on cloud

(c) n P is changing when n X=5

30 40 50 60
0

10

20

30

40

50

60
Computational cost on each entities in our scheme

Ti
m
e(
m
s)

n_P increase when n_X=30

 Write Policy Generating on a controller
 Token Generating on a writer
 Token Matching on cloud

(d) n P is changing when n X=30

Figure 4: Simulation of Computational Cost

International Journal of Network Security(VDOI: 1816-3548-2022-00003) 11

Department (No.GJJ180905), and the MOE (Ministry of
Education in China) Project of Humanities and Social
Sciences (No.20YJAZH112).

References

[1] T. Alam, “A survey on the use of blockchain for the
internet of things,” International Journal of Elec-
tronics and Information Engineering, vol. 13, no. 3,
pp. 119–130, 2021.

[2] A. Deng, J. Shi, and K. He, “Acs-wam: an ac-
cess control scheme supporting write authority man-
agement in cloud-assisted cyber-physical systems,”
in 2019 IEEE 11th International Conference on
Communication Software and Networks (ICCSN),
pp. 747–752, 2019.

[3] X. Dong, J. Yu, Y. Luo, Y. Chen, G. Xue, and
M. Li, “Achieving an effective, scalable and privacy-
preserving data sharing service in cloud computing,”
Computers & security, vol. 42, pp. 151–164, 2014.

[4] S. Fugkeaw and H. Sato, “Enforcing hidden access
policy for supporting write access in cloud storage
systems.,” in CLOSER, pp. 530–536, 2017.

[5] S. Fugkeaw and H. Sato, “An extended cp-abe based
access control model for data outsourced in the
cloud,” in 2015 IEEE 39th Annual Computer Soft-
ware and Applications Conference, vol. 3, pp. 73–78,
2015.

[6] J. Hur and K. Kang, “Secure data retrieval for de-
centralized disruption-tolerant military networks,”
IEEE/ACM Transactions on Networking, vol. 22,
no. 1, pp. 16–26, 2012.

[7] M. Jahan, M. Rezvani, A. Seneviratne, and S.
Jha, “Method for providing secure and private
fine-grained access to outsourced data,” in 2015
IEEE 40th Conference on Local Computer Networks
(LCN), pp. 406–409, 2015.

[8] M. Jahan, M. Rezvani, Q. Zhao, P.S. Roy, K. Saku-
rai, A. Seneviratne, and S. Jha, “Light weight write
mechanism for cloud data,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 5,
pp. 1131–1146, 2017.

[9] M. Jahan, P.S. Roy, K. Sakurai, A. Seneviratne,
and S. Jha, “Secure and light weight fine-grained ac-
cess mechanism for outsourced data,” in 2017 IEEE
Trustcom/BigDataSE/ICESS, pp. 201–209, 2017.

[10] S. Jiaoli, H. Chuanhe, W. Jing, Q. Kuangyu, and H.
Kai, “Multi-user collaborative access control scheme
in cloud storage [j],” Journal on Communications,
vol. 37, no. 1, pp. 88–99, 2016.

[11] K Lee, D.H. Lee, J.H. Park, M. Yung, and Y. Mu,
“Cca security for self-updatable encryption: Protect-
ing cloud data when clients read/write ciphertexts,”
The Computer Journal, vol. 62, no. 4, pp. 545–562,
2019.

[12] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, “Flex-
ible and fine-grained attribute-based data storage in

cloud computing,” IEEE Transactions on Services
Computing, vol. 10, no. 5, pp. 785–796, 2016.

[13] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scal-
able and secure sharing of personal health records in
cloud computing using attribute-based encryption,”
IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 24, no. 1, pp. 131–143, 2012.

[14] T.V.X. Phuong, G. Yang, and W. Susilo, “Hidden
ciphertext policy attribute-based encryption under
standard assumptions,” IEEE transactions on infor-
mation forensics and security, vol. 11, no. 1, pp. 35–
45, 2015.

[15] S. Ruj, M. Stojmenovic, and A. Nayak, “Decentral-
ized access control with anonymous authentication of
data stored in clouds,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 25, no. 2, pp. 384–
394, 2013.

[16] W. Teng, G. Yang, Y. Xiang, T. Zhang, and
D. Wang, “Attribute-based access control with
constant-size ciphertext in cloud computing,” IEEE
Transactions on Cloud Computing, vol. 5, no. 4,
pp. 617–627, 2015.

[17] J. Wang, B. Lang, and R. Zhu, “Rwac: A self-
contained read and write access control scheme for
group collaboration,” in 2018 IEEE Symposium on
Computers and Communications (ISCC), pp. 97–
103, 2018.

[18] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie, “Dac-
macs: effective data access control for multiauthor-
ity cloud storage systems,” IEEE Transactions on
Information Forensics and Security, vol. 8, no. 11,
pp. 1790–1801, 2013.

[19] Y. Yang, X. Liu, and R.H. Deng, “Lightweight break-
glass access control system for healthcare internet-of-
things,” IEEE Transactions on Industrial Informat-
ics, vol. 14, no. 8, pp. 3610–3617, 2017.

Biography

Kai He received the B.S. degree in computer science from
Wuhan Textile University, Wuhan, China, in 2010, and
the Ph.D. degree from Wuhan University, Wuhan, China,
in 2016. Since 2016, He has been a Lecturer at the School
of Mathematics and Computer, Wuhan Textile Univer-
sity, Wuhan, Hubei, China. From Jan. to June 2015, he
was a visiting Student at the University of Calgary. His
research interest includes the Cloud security, auction, et
al.

Ziqi Wang received the B.S. in computer science from
Wuhan Textile University, Wuhan, Hubei, China in 2020.
He is currently pursuing the master degree in Wuhan Tex-
tile University. His research interests include cloud secu-
rity and data security, blockchain.

Jiaoli Shi received the Ph.D. degree from the School of
Computing, Wuhan University, in 2017. Since 2012, she
has been an Assistant Professor at the school of computer
and big data science, Jiujiang University. Her research

International Journal of Network Security(VDOI: 1816-3548-2022-00003) 12

interests include Cloud security, ICN security, SDN and
CDN. Dr. Jiaoli twice won the third prize of Doctoral
Forum of School of Computer Science, Wuhan University
for Excellence in 2014 and 2015.

Anyuan Deng received the B.Sc. degree in computer sci-
ence from Jiangxi Normal University, Nanchang, China,
in 1995, M.Sc. degree in computer science from Huazhong
University of Science and Technology, Wuhan, China, in

2006. Since 2003, He has been a professor at the school
of computer and big data science, Jiujiang University, Ji-
ujiang, China. His research interests include Cloud secu-
rity, ICN security, Software Engineering and CDN.

Shunlin Lv is an undergraduate student in the school of
computer and big data science, Jiujiang University. His
research interests include Cloud security, Privacy protec-
tion.

	Introduction
	Related Works
	System Architecture
	System Model
	Security Requirements
	Security Model

	Proposed Scheme
	Overview
	Structure of Ct
	Structure of the Write Credential
	Intuition of Matching Ct
	Sketch of Scheme
	Construction of Our Scheme
	Setup
	EncryptCt
	TokenGen
	MatchCt

	Analysis
	Correctness Analysis
	Security Proof
	Features of Matching Ct
	Performance Analysis
	Storage Cost Comparison
	Computation Cost Comparison

	Simulation
	Conclusion
	REFERENCES

