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Abstract

Binary half-ℓ-sequences are φ(q)/2-periodic sequences
generated by a Feedback with Carry Shift Regis-
ter(FCSR) with connection integer q. In this paper, we
focus on the linear complexity of binary half-ℓ-sequences.
We give some upper and lower bounds of their linear com-
plexity. The numerical experiment shows that for most
binary half-ℓ-sequences the linear complexity is close to
the upper bound.
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1 Introduction

Linear Feedback Shift Registers(LFSRs) are widely used
in information theory, coding theory, and cryptogra-
phy. Klapper and Goresky [10] proposed Feedback with
Carry Shift Registers(FCSRs), a new type of feedback
shift registers as an alternative to LFSRs. The main
idea of FCSR is to add a memory to LFSR. Figure 1
shows the structure of FCSR with connection integer
q = −1 + q12

1 + q22
2 + . . . + qr2

r, where qi ∈ {0, 1} and
r = ⌈log2(q+1)⌉ is the length of the FCSR.

∑
represents

integer addition and mn ∈ Z.
The operation of the shift register is defined as follows:

1) Compute the sum σ =
∑r

i=1 qian−i +mn−1;

2) Shift the contents one step to the right, outputting
the right almost bit an−r;

3) Place an = σn (mod 2) into the leftmost shift regis-
ter;

4) Replace the memory integer mn−1 with mn = (σn −
an+r)/2 = ⌊σn/2⌋.

Klapper and Goresky discussed some basic properties
of sequences produced by FCSRs [10]. To obtain stream

Figure 1: Feedback with carry shift register

ciphers with better performance, some researchers tried
to combine LFSRs with FCSRs [6, 19]. Some researchers
proposed shift registers base on modified FCSRs, such as
ring FCSR [3,11], F-FCSR [1] and X-FCSR [2].

For a (binary) sequence s∞ = s0, s1, . . . generated by
an FCSR of the shortest length with connection integer
q, we denote

Φ2(s
∞) = ⌈log2(q + 1)⌉,

called the 2-adic complexity of s∞. And s∞ is periodic
with period T = ordq(2), where ordq(2) is the multiplica-
tive order of 2 modulo q. It is clear, if T = φ(q), where
φ(−) is the Euler function, then s∞ reaches its maximum
period. Such sequence is referred to as the ℓ-sequence [10].
If T = φ(q)/2, s∞ is called the half-ℓ-sequence in [8, 18],
which will be discussed in this work. In this case, the
connection integer q is prime and q ≡ ±1 (mod 8). For
details on FCSRs, the reader is referred to the classic
books [7, 9].

An LFSR or an FCSR can generate any binary peri-
odic sequence s. The length of the shortest LFSR (resp.
FCSR) capable of producing s is called the linear com-
plexity (resp. 2-adic complexity) of s. In cryptography,
as candidates of keys in stream cipher systems, binary
sequences must have large “complexity”.
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We should remark that it seems that there is no re-
lationship between the linear complexity and the 2-adic
complexity of a sequence. For example, any m-sequence
of period 2n − 1 has the maximal 2-adic complexity
log2(2

2n−1 − 1) (see [17]) but its linear complexity is n.
So it is necessary to consider the linear complexity for
sequences generated by an FCSR.

Indeed, the linear complexity of ℓ-sequences has been
widely investigated. C. Seo and S. Lee [15] discussed
the linear complexity of ℓ-sequences when connection in-
teger q is 2-prime or strong 2-prime. Q. C. Wang and
H. Xu [13] deduced the linear complexity of ℓ-sequences
when q is of form pe with any prime p. L. Tan and Q.
C. Wang [16] studied the stability of the linear complex-
ity of ℓ-sequences. A. Arshad [4] described the behavior
of frequency distribution of various patterns in binary ℓ-
sequences.

In this paper, we study the linear complexity of binary
half-ℓ-sequences, which has not been touched on in the
literature. In Section 2, we introduce some related notions
and lemmas. In Sections 3, we give some bounds for the
linear complexity of binary half-ℓ-sequences generated by
an FCSR with a prime connection integer q ≡ 1 (mod 8).
In Section 4, we give some bounds for sequences with q ≡
7 (mod 8). Finally, we summarize the work in Section 5.

2 Preliminaries

For our discussion, we need the exponential representa-
tion of FCSR sequences proposed by Klapper [10].

Definition 1. [10] Let s∞ be a periodic binary sequence
generated by an FCSR with connection integer q. Then
there exists A ∈ Zq such that for all i = 0, 1, 2, . . . we have

si = A · 2−i (mod q) (mod 2). (1)

Then, we introduce some definitions and lemmas
about characteristic polynomial, generating function, cy-
clotomic polynomial, and order of the polynomial, which
are important in our proof.

Definition 2. [5] Let s∞ be a T -period sequence over
F2. A polynomial of the form

f(x) = 1 + c1x+ c2x
2 + . . .+ crx

r ∈ F2[x]

is called the characteristic polynomial of s∞ if

si = c1si−1 + c2si−2 + . . .+ crsi−r,∀i ≥ r.

The characteristic polynomial with the lowest degree
is called the minimal polynomial, denoted by m(x). The
linear complexity of s∞ is defined as the degree of m(x),
denoted as LC(s∞).

Definition 3. [5] Let s∞ be a T -periodic sequence over
F2, the polynomial of the form

S(x) = s0 + s1x+ s2x
2 + . . . ∈ F2[x] (2)

is called the generating function of s∞.

Lemma 1. [5] Let s∞ be a T -periodic sequence with gen-
erating polynomial S(x) defined by Equation (2). Then
the linear complexity of s∞ is

LC(s∞) = T − deg(gcd(xT − 1, S(x))).

Definition 4. [14] Let g(x) ∈ F2[x] be a nonzero poly-
nomial. If g(0) ̸= 0, then the least positive integer m for
which g(x) divides 1 + xm is called the order of g(x) and
denoted by ord(g(x)).

The order of a polynomial is also called the period of
it.

Lemma 2. [14] Let m(x) be the minimal polynomial of
s∞ of the least period T , then ord(m(x)) = T .

Lemma 3. [14] Let h(x) = g1(x)
n1g2(x)

n2 . . . gk(x)
nk ,

where g1(x), g2(x), . . . , gk(x) are pairwise relatively prime
nonzero polynomials and n1, n2, . . . , nk ∈ N. Then
ord(h(x)) = 2ξm, where ξ is the least positive in-
teger such that 2ξ ≥ max{n1, n2, . . . , nk} and m is
lcm(ord(g1(x)), ord(g2(x)), . . . , ord(gk(x)).

Definition 5. [14] Let n be a positive integer with p ∤ n,
and e be an n-th root of unity over F2, then

Qn(x) =

n∏
i=1,

gcd(i,n)=1

(x− ei) (3)

is the n-th cyclotomic polynomial over F2.

According to the theory of cyclotomic polynomial [14],
we have

1 + xn =
∏
d|n

Qd(x) (4)

and

Qd(x) =

φ(d)/ deg(ri(x))∏
i=1

ri(x), (5)

where ri(x) is an irreducible polynomial of degree ordd(2).

3 Bounds on Linear Complexity
of Binary half-ℓ-sequences with
Prime Connection Integer q ≡ 1
(mod 8)

In this section, we discuss the linear complexity of binary
half-ℓ-sequences generated by FCSR with a prime connec-
tion integer q ≡ 1 (mod 8).

Lemma 4. [8] Let s∞ be a binary half-ℓ-sequence gen-
erated by an FCSR with prime connection integer q ≡ 1
(mod 8). Then s∞ is balanced, and the first half of s∞ is
the bit-wise complement of its second half.
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Lemma 4 deduces the following lemma.

Lemma 5. Let s∞ be a binary half-ℓ-sequence gener-
ated by an FCSR with prime connection integer q ≡ 1
(mod 8). Then f(x) = 1 + x+ x(q−1)/4 + x(q−1)/4+1 is a
characteristic polynomial of s∞.

From the above lemma, we immediately get a general
upper bound for linear complexity.

Theorem 1. Let s∞ be a binary half-ℓ-sequence gener-
ated by an FCSR with prime connection integer q ≡ 1
(mod 8). Then we have

LC(s∞) ≤ (q − 1)/4 + 1.

Proof. By Lemma 5, we have LC(s∞) ≤ deg(f(x)) =
(q − 1)/4 + 1.

Below we give two lower bounds. The first (Theorem 3)
is obtained by analyzing the characteristic polynomial of
binary half-ℓ-sequences. The second lower bound (Theo-
rem 4) is from the exponential representation of binary
FCSR sequences.

Theorem 2. Let s∞ be a binary half-ℓ-sequence gener-
ated by an FCSR with prime connection integer q ≡ 1
(mod 8). Write

q − 1

2
= 4 · 2e0pe11

with odd prime p1 and ei ∈ N for i ∈ {0, 1}. Then we
have

LC(s∞) ≥ 1 + 2e0+1 + ordpe1
1
(2).

Proof. Let Id be the set of all the factors of d, for example,
I12 = {1, 2, 3, 4, 6, 12}. By Lemma 5, we see that

f(x) = (1 + x)(1 + xp
e1
1 )2

e0+1

is a characteristic polynomial of s∞. According to
Equactions (4) and (5),

f(x) =(1 + x)1+2e0+1 ∏
d|pe1

1

Qd(x)
2e0+1

=(1 + x)1+2e0+1 ∏
d|pe1

1

(

φ(d)/ deg(rid (x))∏
i=1

rid(x))
2e0+1

.

Since the minimal polynomial m(x) | f(x), then

m(x) = (1 + x)a
k∏

j=1

(

cj∏
i=1

ridj (x))
bj

where dj | pe11 , 1 ≤ k ≤ #Ipe1
1
, 1 ≤ bj ≤ 2e0+1,

0 ≤ a ≤ 1 + 2e0+1, and 1 ≤ cj ≤ φ(dj)/ deg(ridj (x)).
From Lemma 3,

ord(m(x)) = 2ξ · lcm(d1, d2, . . . , dk),

where ξ is the least positive integer such that 2ξ ≥
max{a, b1, . . . , bk}. From Lemma 2, ord(m(x)) = (q −
1)/2 = 2e0+2pe11 . Hence,

2ξ = 2e0+2, lcm(d1, d2, . . . , dk) = pe11 .

Clearly, 1+2e0+1 is the least positive integer such that
2ξ ≥ 2e0+2. For dj | pe11 , we have deg(rij (x)) > 1. So the
degree of m(x)

deg(m(x)) ≥ deg((1 + x)1+2e0+1
k∏

j=1

ridj (x))

≥1 + 2e0+1 +

k∑
j=1

orddj (2).

Since dj | pe11 and lcm(d1, d2, . . . , dk) = pe11 , there must

exist some 1 ≤ k ≤ #Ipe1
1

such that pe11 ∈
⋃k

j=1 Idj
. So

we have
k∑

j=1

orddj
(2) > ordpe1

1
(2)

and

LC(s∞) = deg(m(x)) ≥ 1 + 2e0+1 + ordpe1
1
(2).

Based on Theorem 2, we give a more general result.

Theorem 3. Let s∞ be a binary half-ℓ-sequence gener-
ated by an FCSR with prime connection integer q ≡ 1
(mod 8). Write

q − 1

2
= 4 · 2e0pe11 pe22 . . . pett

with odd primes pi, e0 ∈ N∪{0} and ei ∈ N for 1 ≤ i ≤ t.
Then we have

LC(s∞) ≥ 1 + 2e0+1 +max{ordpe1
1
(2), . . . , ordpet

t
(2)}.

Proof. Similar to Theorem 2,

f(x) = (1+x)1+2e0+1 ∏
d>1,

d|
∏t

i=1 p
ei
i

(

φ(d)/ deg(rid (x))∏
i=1

rid(x))
2e0+1

is a characteristic polynomial of s∞. Let m(x) be the
minimal polynomial of s∞, then

m(x) = (1 + x)a
k∏

j=1

(

cj∏
i=1

ridj (x))
bj ,

where dj |
∏t

i=1 p
ei
i , 1 ≤ k ≤ #I∏t

i=1 p
ei
i
, 1 ≤

bj ≤ 2e0+1, 0 ≤ a ≤ 1 + 2e0+1, and 1 ≤ cj ≤
φ(dj)/ deg(ridj (x)). According to Lemma 3, we have

ord(m(x)) = 2ξ · lcm(d1, d2, . . . , dk), then 2ξ = 2e0+2 and
lcm(d1, d2, . . . , dk) =

∏t
i=1 p

ei
i .
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Similar to Theorem 2,

deg(m(x)) ≥ 1 + 2e0+1 +

k∑
j=1

orddj
(2).

Since dj | pe11 pe22 . . . pett and lcm(d1, . . . , dk) =
∏t

i=1 p
ei
i ,

there must exist some 1 ≤ k ≤ #Ipe1
1 ...p

et
t

such that

{pe11 , . . . , pett } ⊂
⋃k

j=1 Idj
. For gcd(a, b) = 1, ordab(2) =

lcm(orda(2), ordb(2)) ≥ max{orda(2), ordb(2)}. We can
deduce

k∑
j=1

orddj (2) ≥ max{ordpe1
1
(2), . . . , ordpet

t
(2)}

and

LC(s∞) ≥ 1 + 2e0+1 +max{ordpe1
1
(2), . . . , ordpet

t
(2)}.

Next, by Definition 1, we give a lower bound in Theo-
rem 4.

Theorem 4. Let s∞ be a binary half-ℓ-sequence gener-
ated by an FCSR with prime connection integer q. Then
we have

LC(s∞) ≥ 1 + ⌊log2(q)⌋.

Proof. From Definition 2, the generating function of se-
quence s∞ is

S(x) =

∞∑
i=0

A · 2−i (mod q) (mod 2)xi (6)

Let β be the prime such that 2β < q and 2β+1 > q,
from Definition 1, we have

sT−1−β = 2−T+(β+1) ≡ 1 (mod q) (mod 2)

and

sT−1−i = 2−T+1+i ≡ 0 (mod q) (mod 2),

where 0 ≤ i ≤ β − 1. Let A = 1 in Equation (6), then

S(x) =

T−1−(β+1)∑
i=0

six
i + xT−1−β ,

and

deg(S(x)) ≤ T − 1− ⌊log2(q)⌋.

From Lemma 1,

LC(s∞) = T − deg(gcd(xT − 1, S(x))) ≥ 1 + ⌊log2(q)⌋.

Remark 1. The result in Theorem 4 holds for either q ≡
1 (mod 8) or q ≡ 7 (mod 8).

For all binary half-ℓ-sequences with prime q ≡ 1
(mod 8) and q < 5000, by the BM algorithm [12] and the
results in the above theorems, we can check that about
82% of binary half-ℓ-sequences whose linear complexity
achieves the upper bound in Theorem 1.

Example 1. Let us consider the FCSR with connection
integer q = 41 = 20×5×8+1, the period is (q−1)/2 = 20.
With the constant A = 1, binary half-ℓ-sequence s∞ is
given by

si = 21i (mod 41) (mod 2) (7)

where i = 0, 1, 2, . . ., then the first period of s∞ is

s20 = 11100111110001100000

From Theorem 1, LC(s∞) ≤ (q − 1)/4 + 1 = 11. From
Theorem 3, LC(s∞) ≥ 1+ 20+1 + ord5(2) = 7. And from
Theorem 4, LC(s∞) ≥ 1 + ⌊log2(41)⌋ = 6. By the BM
algorithm, the linear complexity LC(s∞) = 11.

4 Bounds on Linear Complexity
of Binary half-ℓ-sequences with
Prime Connection Integer q ≡ 7
(mod 8)

In this section, we discuss the linear complexity of binary
half-ℓ-sequences with prime q ≡ 7 (mod 8). We give an
upper bound in Theorem 5 and a lower bound in Theo-
rem 6, respectively.

For a T -periodic binary sequence s∞, let WH(s∞) de-
note the Hamming weight of the first period of s∞, i.e.
the number of 1’s in one period of s.

Theorem 5. Let s∞ be a binary half-ℓ-sequence s∞

generated by an FCSR with prime q ≡ 7 (mod 8). If
WH(s∞) is odd, then LC(s∞) ≤ (q − 1)/2. And if
WH(s∞) is even, then LC(s∞) ≤ (q − 1)/2− 1.

Proof. Let WH(s∞) be even, then (1 + x) | S(x). By
Lemma 1, we have

deg(gcd(xT − 1, S(x))) ≥ deg(1 + x)

and hence
LC(s∞) ≤ (q − 1)/2− 1.

Let WH(s∞) be odd, we know that (1 + x) ∤ ST (x).
Similarly,

LC(s∞) ≤ (q − 1)/2.

Theorem 6. Let s∞ be a binary half-ℓ-sequence gener-
ated by an FCSR with q ≡ 7 (mod 8). Write

q − 1

2
= pe11 pe22 . . . pett

with odd primes pi and ei ∈ N for 1 ≤ i ≤ t. Then we
have

LC(s∞) ≥ max{ordpe1
1
(2), ordpe2

2
(2), . . . , ordetpt

(2)}.
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Proof. Let m(x) be the minimal polynomial of s∞. From
Definition 4, we can deduce m(x)|(1 + x(q−1)/2).

Let (q − 1)/2 =
∏t

i=1 p
ei
i , then we have

ord(m(x)) = (q − 1)/2 =

t∏
i=1

peii .

Similar to Theorem 3,

1 + x(q−1)/2 = (1 + x)
∏
d>1,

d|pe1
1 p

e2
2 ...p

et
t

Qd(x).

Supposem(x) =
∏k

j=1,bj≥1 Qdj (x)
bj , where dj |

∏k
j=1 p

ej
j ,

dj > 1, bj ≥ 1. From Lemma 3, we have

ord(m(x)) = 2ξ · lcm(d1, d2, . . . , dk),

where ξ is the least integer such that 2ξ ≥
max{b1, b2, . . . , bk}.

According to Lemma 2, ord(m(x)) =
∏t

i=1 p
ei
i , we have

2ξ = 1, lcm(d1, d2, . . . dk) =

t∏
i=1

peii .

By Theorem 3, LC(s∞) ≥ max{ordpe1
1
(2), . . . , ordpet

t
(2)}.

The result in Theorem 4 is also suitable for the case
q ≡ 7 (mod 8).

For prime q < 5000 with q ≡ 7 (mod 8), we can check
that about 86% of binary half-ℓ-sequences whose linear
complexity achieves the upper bound.

Example 2. Let us consider a binary half-ℓ-sequence s∞

with q = 47 = 5×8+7, and the period of s∞ is (q−1)/2 =
23. With the constant A = 1, the sequence is given by

si = 24i (mod 47) (mod 2) (8)

where i = 0, 1, 2, . . .. Then the first period of s∞

s23 = 10001100100111010100000

From Theorem 3, LC(s∞) ≤ (q − 1)/2 − 1 = 23.
From Theorem 4, LC(s∞) ≥ ord23(2) = 11. From 6
LC(s∞) ≥ 1 + ⌊log2(47)⌋ = 7. By the BM algorithm, the
linear complexity is LC(s∞) = 23.

5 Conclusions

In this paper, we have discussed the linear complexity
of binary half-ℓ-sequences generated by FCSRs. Based
on the theory of FCSR and cyclotomic polynomial, we
give some bounds of linear complexity and some exam-
ples. The numerical experiment shows that the linear
complexity of most binary half-ℓ-sequences achieves the
upper bound.
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