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Abstract

Quantum synchronizable codes can be used to correct the
effects of both quantum noise on qubits and misalign-
ments in block synchronization. This paper contributes
to constructing quantum synchronizable codes from the
dual-containing cyclic codes obtained by sextic cyclotomy.
We show that these quantum synchronizable codes pos-
sess good synchronization capabilities, which can always
attain the upper bound, and good error-correcting capa-
bility towards bit errors and phase errors when the corre-
sponding cyclic codes are optimal or almost optimal.
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1 Introduction

In decades, quantum information theory has made great
progress in quantum information and quantum communi-
cation, especially in quantum error-correcting codes [16].
However, the studies on quantum error-correcting codes
tend to just focus on the simplest Pauli errors on qubits,
which roughly corresponds to additive noise in classical
encoding theory [3,9,17]. Meanwhile, the misalignment in
block synchronization can also cause catastrophic failure
in quantum information transmission. This kind of error
occurs due to the fact that the information processing de-
vices misidentify the boundaries of an information qubit
stream. For instance, suppose that the quantum informa-
tion can be expressed by an ordered sequence of informa-
tion block and each chunk of information is encoded into
a block of consecutive three qubits in a stream of qubit
|qi⟩, i ∈ I, where I is an indexed set. If three blocks
of information are encoded, we have 9 ordered qubits
(|q0⟩|q1⟩|q2⟩|q3⟩|q4⟩|q5⟩|q6⟩|q7⟩|q8⟩), then each of the three
blocks (|q0⟩|q1⟩|q2⟩), (|q3⟩|q4⟩|q5⟩) and (|q6⟩|q7⟩|q8⟩) forms
an information chunk. Suppose the synchronization sys-
tem was established at the beginning of information trans-
mission, but synchronization may be lost during the quan-
tum communications or quantum computations. The mis-

alignment occurs when the receiver incorrectly locates the
boundary of each block of data by a certain number of po-
sitions towards the left or right. For example, the receiver
wrongly read out (|q5⟩|q6⟩|q7⟩) instead of the correct in-
formation chunk (|q6⟩|q7⟩|q8⟩). For more details, see [4].

As a subclass of quantum error-correcting codes, quan-
tum synchronizable codes (QSCs) can be used to pre-
vent both the interference of quantum noises on qubits
and misalignments in block synchronization. In order to
ensure information security, it is of great significance to
study the construction of QSCs. In 2013, Fujiwara et
al. [5, 6] proposed the framework of quantum block syn-
chronization and gave the first example of QSCs. In 2014,
Xie et al. [18] used quadratic residue codes to produce bi-
nary QSCs which attain the upper bound on synchroniza-
tion capabilities. Recently, Li and Yue [13] obtained two
families of QSCs with good error-correcting performance.
Some further studies about QSCs can be seen in [12,14].

Although we now have the theoretical framework of
QSCs, there exists only a few families of QSCs in the lit-
erature. Cyclotomic classes can be used to constructed
self-dual codes [7, 11], which have important appliance
in constructing QSCs. Hence, we use the cyclic codes
obtained by sextic cyclotomy to construct QSCs in this
work. This paper is arranged as follows. In Section 2,
we review some general conclusions of cyclic codes and
cyclotomic classes. In Section 3, we construct some dual-
containing cyclic codes and discuss their minimum Ham-
ming distance. In Section 4, we construct two classes of
QSCs and discuss their synchronization capabilities and
error-correcting performance. Finally, some concluding
remarks are given in Section 5.

2 Preliminaries

2.1 Cyclic Codes and Dual Codes

Let Fq be a finite field with q elements, where q is a prime
power. An [n, k, d]q linear code C is a k-dimensional sub-
space of the n-dimensional vector space over Fq such that
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min{wt(v)|v ∈ C, v ̸= 0} = d, where wt(v) is the Ham-
ming weight of v. A linear code with parameters [n, k, d]q
is called optimal if and only if its minimum Hamming dis-
tance reaches the Hamming bound, see e.g. [2]. A linear
code with parameters [n, k, d]q is called almost optimal
means that the code with parameters [n, k, d+ 1]q is op-
timal. An [n, k]q cyclic code C is a linear code with the
property that if a codeword c = (c0, c1, · · · , cn−1) ∈ C,
then (cn−1, c0, · · · , cn−2) ∈ C. It is known that C can be
seen as an principal ideal ⟨g(x)⟩ in Fq[x]/(x

n − 1). The
polynomial g(x) with degree n − k is a monic divisor of
xn−1, and it is called the generator polynomial of C. The
polynomial h(x) = xn − 1/g(x) is called the parity-check
polynomial of C.

The Euclidean inner product between two codewords
x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) is de-

fined by (x, y) =
n−1∑
i=0

xiyi. The Euclidean dual code

C⊥ = {x ∈ Fn
q |(x, c) = 0,∀c ∈ C} of C is also a cyclic

code [10], and the generator polynomial of C⊥ has the
form

h̃(x) = h(0)−1xkh
(
x−1

)
, (1)

which is called the reciprocal polynomial of h(x).

Let C1 = ⟨g1(x)⟩ and C2 = ⟨g2(x)⟩ be two cyclic codes
with parameters [n, k1]q and [n, k2]q respectively. If C1 ⊆
C2, then C2 is said to be C1-containing, and C2 is called
the augmented code of C1. If C⊥

2 ⊂ C2, C2 is called
dual-containing.

2.2 Sextic Cyclotomic Classes

Let n = 12m+ 7 be an odd prime and γ be a fixed prim-
itive element in Fn. Then the sextic cyclotomic classes

C
(6,n)
0 , C

(6,n)
1 , . . . , C

(6,n)
5 in Fn are

C
(6,n)
i = {γ6j+i|0 ≤ j ≤ n− 1

6
− 1}, for i = 0, 1, · · · , 5.

Trivially C
(6,n)
i = γiC

(6,n)
0 and F∗

n =
⋃5

i=0 C
(6,n)
i , where

F∗
n = Fn\{0}.

Lemma 1. Let the notations be defined as above. Then

C
(6,n)
i = −C

(6,n)
i+3 ,

where i = 0, 1, · · · , 5, and i+ 3 means i+ 3 (mod 6).

Proof. Since γ is a fixed primitive element in Fn, −1 =

γ
n−1
2 = γ6m+3 ∈ C

(6,n)
3 . Then the result can be obtained

immediately.

From now on, we let q ∈ C
(6,n)
0 , and η be a n-th prim-

itive root of unity in Fqordn(q) , where ordn(q) is the mul-
tiplicative order of q modulo n. Let

g
(6,n)
i (x) =

∏
j∈C

(6,n)
i

(x− ηj), (2)

where i = 0, 1, · · · , 5. It is known that g
(6,n)
i (x) ∈ Fq[x],

and the factorization of xn − 1 is

xn − 1 = (x− 1)

5∏
i=0

g
(6,n)
i (x).

3 Cyclic Codes from Sextic Cyclo-
tomy

3.1 Dual-containing Codes

Let Ci and C̄i be the cyclic codes over Fq generated by

g
(6,n)
i (x) and xn−1

g
(6,n)
i+3 (x)

respectively, i = 0, 1, · · · , 5.

Lemma 2. Let n = 12m + 7 be an odd prime, where m
is a nonnegative integer. Then

(a) C⊥
i = C̄i, (b) C⊥

i ⊂ Ci. (3)

Proof. By Equation (1), the reciprocal polynomial of

g
(6,n)
i (x) is

g̃
(6,n)
i (x) =

(
g
(6,n)
i (0)

)−1

x
deg

(
g
(6,n)
i (x)

)
g
(6,n)
i (x−1).

Assume that

g
(6,n)
i (x) = (x− ηei1 )(x− ηei2 ) . . . (x− ηei2m+1 ),

where eij runs over C
(6,n)
i and each element appears only

once. Then

g̃
(6,n)
i (x) =(−ηei1 )−1(−ηei2 )−1 . . . (−ηei2m+1 )−1x2m+1

(x−1 − ηei1 )(x−1 − ηei2 ) . . . (x−1 − ηei2m+1 )

=(x− η−ei1 )(x− η−ei2 ) . . . (x− η−ei2m+1 ).

According to Lemma 1 and Equation (2), we have

g̃
(6,n)
i (x) = g

(6,n)
i+3 (x), (4)

where i = 0, 1, · · · , 5. Note that the parity-check polyno-
mial of Ci is

h(x) =
xn − 1

g
(6,n)
i (x)

= (x− 1)
∏

j∈F∗
n\C(6,n)

i

(x− ηj).

And by Equation (4),

h̃(x) = (x− 1)g
(6,n)
i (x)g

(6,n)
i+1 (x)g

(6,n)
i+2 (x)g

(6,n)
i+4 (x)g

(6,n)
i+5 (x)

is the generator polynomial of C⊥
i . This means C⊥

i = C̄i.

Moreover, since g
(6,n)
i (x)|h̃(x), we get C⊥

i ⊂ Ci.

In addition, let Di and D̄i be the cyclic codes

over Fq generated by g
(6,n)
i (x)g

(6,n)
i+1 (x)g

(6,n)
i+2 (x) and (x −

1)g
(6,n)
i (x)g

(6,n)
i+1 (x)g

(6,n)
i+2 (x) respectively, for any i ∈

{0, 1, 2, 3, 4, 5}. By using the similar method in Lemma 2,
we have the following Lemma.
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Lemma 3. Let n = 12m+ 7 be an odd prime. Then

(a) D⊥
i = D̄i, (b) D⊥

i ⊂ Di. (5)

Proof. The proof is straightforward from Lemma 2.

Theorem 1. Let di be the minimum Hamming distance
of the cyclic code Di. Then d2i − di + 1 ≥ n, where n is
the length of Di.

Proof. Let d(x) be a codeword in Di with minimum Ham-
ming weight d. From Equation (2),

d(x) =
∏

i∈C
(6,n)
i ∪C

(6,n)
i+1 ∪C

(6,n)
i+2

(x− ηi)s(x),

where s(x) ∈ Fq[x], deg(s(x)) < n+1
2 . Since ηi are the

roots of d(x) = 0, d(x−1) = 0 have roots η−i, where

i ∈ C
(6,n)
i ∪C

(6,n)
i+1 ∪C

(6,n)
i+2 . Then we have −1 ∈ C

(6,n)
i+3 , we

then have d(x−1) is a codeword in Di+3 with minimum
Hamming weight d. Therefore, d(x)d(x−1) is a codeword
in Di ∩Di+3, which means d(x)d(x−1) a multiple of

g
(6,n)
i (x)g

(6,n)
i+1 (x)g

(6,n)
i+2 (x)g

(6,n)
i+3 (x)g

(6,n)
i+4 (x)g

(6,n)
i+5 (x)

=
xn − 1

x− 1
=

n−1∑
j=0

xj .

Then the weight of codewrod d(x)d(x−1) is n. Since there
are d terms equal to some nonzero elements of Fq in d(x),
we have d2 − d+ 1 ≥ n. The desired result follows.

Example 1. Let n = 12m + 7 and q ∈ C
(6,n)
0 . Table 1

gives some examples of cyclic codes and their duals, and
some of them are optimal or almost optimal. All compu-
tations have been done by MAGMA [1]. Obviously, the
minimum Hamming distance of Di in Table 1 satisfy the
bound in Theorem 1.

Remark 1. From Lemmas 2 and 3, we obtain two classes
of dual-containing cyclic codes Ci and Di. Furthermore,
for any i = {0, 1, 2}, the cyclic codes with generator poly-

nomial g
(6,n)
i (x)g

(6,n)
i+j (x) are dual-containing codes, where

j ∈ {0, 1, 2, 4, 5} and j ̸= i.

3.2 Augmented Cyclic Codes

In order to obtain the augmented cyclic codes of Ci and
Di, we need the concept of cyclotomic cosets. The q-
cyclotomy coset modulo n containing the integer s is de-
fined as

C(s,n) = {sqi (mod n)|i ∈ N}, (6)

where N is the set of all nonnegative integers. It is notable
that s ∈ {0, 1, 2, . . . , n− 1}. Then the unique irreducible
minimal polynomial of ηs in Fq[x] is

Ms(x) =
∏

i∈C(s,n)

(x− ηi). (7)

Lemma 4. [15] Let n be an odd prime, and the size of
C(1,n) be ℓ. Then the size of any cyclotomic coset C(s,n)

is ℓ.

Theorem 2. Let n = 12m + 7 be an odd prime, Ci =

⟨g(6,n)i (x)⟩. If the size of C(1,n) is ℓ, the generator poly-

nomial g
(6,n)
i (x) can be expressed as

g
(6,n)
i (x) =

t∏
j=1

Mij (x),

where t = n−1
6ℓ .

Proof. By Lemma 4, the size of C(s,n) is ℓ. Let q =

γ6k ∈ C
(6,n)
0 be a prime power, where k ∈ {1, 2, . . . , n−7

6 }.
As γ is the fixed primitive element in Fn, it is easy

to deduce that C(s,n) ⊆ C
(6,n)
i . Since

⋃5
i=0 C

(6,n)
i =⋃n−1

s=1 C(s,n) = F∗
n, we have C

(6,n)
i =

⋃t
j=1 C(ij ,n), where

i1, i2, · · · , it ∈ {1, 2, · · · , n − 1} are some appropriate in-

tegers. Furthermore, we have t =
|C(6,n)

i |
|C(s,n)|

= n−1
6ℓ , where

|C(s,n)|means the size of C(s,n). By Equations (7) and (2),

we have g
(6,n)
i (x) =

∏t
j=1 Mij (x).

Example 2. Consider the sextic cyclotomic classes

C
(6,n)
i in F127.

C
(6,127)
0 = {1, 47, 50, 64, 87, 25, 32, 107, 76, 16, 117, 38, 8,

122, 19, 4, 61, 73, 2, 94, 100},

C
(6,127)
1 = {6, 28, 46, 3, 14, 23, 65, 7, 75, 96, 67, 101, 48, 97,

114, 24, 112, 57, 12, 56, 92},

C
(6,127)
2 = {36, 41, 22, 18, 84, 11, 9, 42, 69, 68, 21, 98, 34, 74,

49, 17, 37, 88, 72, 82, 44},

C
(6,127)
3 = {89, 119, 5, 108, 123, 66, 54, 125, 33, 27, 126, 80,

77, 63, 40, 102, 95, 20, 51, 111, 10},

C
(6,127)
4 = {26, 79, 30, 13, 103, 15, 70, 115, 71, 35, 121, 99,

81, 124, 113, 104, 62, 120, 52, 31, 60},

C
(6,127)
5 = {29, 93, 53, 78, 110, 90, 39, 55, 45, 83, 91, 86, 105,

109, 43, 116, 118, 85, 58, 59, 106}.

Let γ = 3 be the fixed primitive element of F127. Since

q = γ6K ∈ C
(6,127)
0 , where K ∈ {0, 1, · · · , 20}, the order

of q modulo n is |γ|
gcd(6K,|γ|) . If K = 14, then q = 19 and

the order of q modulo n is 3. By Equation (6), we have

C(1,127) = {1, 19, 107}, C(2,127) = {2, 38, 87},
C(4,127) = {4, 76, 47}, C(8,127) = {8, 25, 94},
C(16,127) = {16, 50, 61}, C(32,127) = {32, 100, 122},
C(64,127) = {64, 73, 117}.

Thus C
(6,127)
0 = C(1,127) ∪ C(2,127) ∪ C(4,127) ∪ C(8,127) ∪

C(16,127) ∪ C(32,127) ∪ C(64,127), which is equivalent to

g
(6,127)
0 (x)=M1(x)M2(x)M4(x)M8(x)M16(x)M32(x)M64(x).



International Journal of Network Security (VDOI: 1816-3548-2022-00019) 4

Table 1: Dual-containing cyclic codes Ci and Di

Codes Dual codes Comments
Ci = [19, 16, 3]7 C⊥

i = [19, 3, 15]7 Both optimal [8]
Di = [19, 10, 7]7 D⊥

i = [19, 9, 8]7 Both almost optimal [8]
Ci = [31, 26, 3]2 C⊥

i = [31, 5, 16]2 Both optimal [8]
Di = [31, 16, 7]2 D⊥

i = [31, 15, 8]2 Di almost optimal, D⊥
i optimal [8]

Ci = [43, 36, 5]4 C⊥
i = [43, 7, 27]4 Both optimal [8]

Di = [43, 22, 12]4 D⊥
i = [43, 21, 12]4 Di almost optimal [8]

Ci = [67, 56, 6]9 C⊥
i = [67, 11, 44]9 Ci almost optimal, C⊥

i optimal [8]
. . . . . . . . .

In this way, we have the following equations.

C
(6,127)
1 =C(3,127) ∪ C(6,127) ∪ C(12,127) ∪ C(24,127)

∪ C(48,127) ∪ C(96,127) ∪ C(65,127),

C
(6,127)
2 =C(9,127) ∪ C(18,127) ∪ C(36,127) ∪ C(72,127)

∪ C(17,127) ∪ C(34,127) ∪ C(68,127),

C
(6,127)
3 =C(5,127) ∪ C(10,127) ∪ C(20,127) ∪ C(40,127)

∪ C(80,127) ∪ C(33,127) ∪ C(66,127),

C
(6,127)
4 =C(13,127) ∪ C(26,127) ∪ C(52,127) ∪ C(104,127)

∪ C(81,127) ∪ C(35,127) ∪ C(70,127),

C
(6,127)
5 =C(29,127) ∪ C(58,127) ∪ C(116,127) ∪ C(105,127)

∪ C(83,127) ∪ C(39,127) ∪ C(78,127),

It is easy to deduce that the augmented cyclic code of
Ci (or Di) can be obtained by removing one or more irre-

ducible factors of g
(6,n)
i (x) (or g

(6,n)
i (x)g

(6,n)
i+1 (x)g

(6,n)
i+2 (x)).

It is also notable that any augmented code obtained by
this way is also dual-containing code. Furthermore, we
have the following results.

Lemma 5. Let n = 12m+7 be an odd prime, and Ci, Di

be the cyclic codes defined by above for i ∈ {0, 1, 2, 3, 4, 5}.
If t in Theorem 2 is greater than 1, the following conclu-
sions are established.

1) If C = ⟨ g
(6,n)
i (x)∏

i∈A Mi(x)
⟩, then Ci ⊂ C, where A is some

nonempty subset of {i1, i2, · · · , it}.

2) If D = ⟨ g
(6,n)
i (x)g

(6,n)
i+1 (x)g

(6,n)
i+2 (x)∏

i∈B Mi(x)
⟩, then Di ⊂ D, where

B is some nonempty subset of {i1, i2, · · · , it} ∪ {(i+
1)1, (i+1)2, · · · , (i+1)t}∪{(i+2)1, (i+2)2, · · · , (i+
2)t}.

Proof. The results come from the definition of dual-
containing codes.

4 Quantum Synchronizable Codes
from the Obtained Cyclic Codes

First we review some basic concepts of QSCs. An [[n, k]]
quantum error-correcting code encodes k logical qubits

into n physical qubits. A QSC with parameters (cl, cr)-
[[n, k]] is an encode scheme that corrects not only bit er-
rors and phase errors but also a misalignment up to the
left by cl qubits and up to the right by cr qubits, where
cl and cr are nonnegative integers.

We provide the construction of QSCs by applying the
method discovered by Fujiwara et al. [4, 6].

Lemma 6. [4] Let C1 = ⟨g1(x)⟩ and C2 = ⟨g2(x)⟩ be
two cyclic codes of parameters [n, k1, d1]r and [n, k2, d2]r
respectively in Fr with k1 > k2 such that C2 ⊂ C1 and

C⊥
2 ⊆ C2. Define f(x) = g2(x)

g1(x)
in Fr[x]/(x

n−1). Then for

any pair of nonnegative integers cl, cr satisfying cl+cr <
ord (f(x)), we can construct a (cl, cr)-[[n+cl+cr, 2k2−n]]
QSC from C1 and C2 that can correct up to

⌊
d1−1

2

⌋
bit

errors and
⌊
d2−1

2

⌋
phase errors.

4.1 Maximum Misalignment Tolerance

Lemma 7. The tolerable magnitude of QSCs is upper
bounded by its length n.

Proof. From Lemma 6, the synchronization capability of
QSCs is related to the order of f(x). According to the
definition of f(x) and f(x)|(xn−1), it is clear that the tol-
erable magnitude of QSCs is upper bounded by its length
n.

Lemma 8. Let n = 12m+ 7 be an odd prime. Then the
tolerable magnitude of QSCs with length n can reach the
upper bound.

Proof. As the order of η is n in Fqordn(q) , where n is an
odd prime. We know that the order of any root of f(x)
is n, then the order of f(x) must be n. By Lemma 7, the
tolerable magnitude of QSCs constructed by Lemma 6
can reach the upper bound n.

Based on the cyclic code Ci constructed in Lemma 2,
we can obtain a class of QSCs as follows, whose synchro-
nization capabilities can always reach the upper bound.

Theorem 3. Let n = 12m+ 7 be an odd prime, t = n−1
6ℓ

and q ∈ C
(6,n)
0 , where qℓ ≡ 1 mod n. For any nonnegative

integers cl and cr satisfying cl+cr < n, we can construct a
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QSC with parameters (cl, cr)-[[n+ cl+ cr, 2|A|ℓ+ 2n+1
3 ]]q,

where |A| is the size of A in Lemma 5, and 0 ≤ |A| ≤
t− 2 = n−12ℓ−1

6ℓ .

Proof. From the definition of cyclotomic coset, we have
that the size of C(s,n) is ℓ and ℓ|(2m + 1), for any s ∈
{1, 2, . . . , n − 1}. It is obvious that the cyclic code Ci =

⟨g(6,n)i (x)⟩ has augmented codes if and only if g
(6,n)
i (x)

has at least t = n−1
6ℓ irreducible factors in Fq[x]. Since

the size of C
(6,n)
i is odd, we let t ≥ 3. According to (a) in

Lemma 5, the cyclic code C
(6,n)
i = ⟨g(6,n)i (x)⟩ has an aug-

mented code C with parameters
[
n, 5n+1

6 + |A|ℓ
]
. Tak-

ing a set A′ such that A ⊂ A′ ⊂ {i1, i2, . . . , it}, then we
can get a cyclic code C ′ with parameters

[
n, 5n+1

6 + |A′|ℓ
]

such that C ⊂ C ′. Then 0 ≤ |A| ≤ t− 2 = n−12ℓ−1
6ℓ . Fur-

thermore, by Lemmas 7 and 8, we can obtain a QSC with
parameters (cl, cr)-[[n+cl+cr, 2|A|ℓ+ 2n+1

3 ]]q, whose tol-
erable magnitude against misalignment errors can reach
the upper bound n.

Moreover, we can also construct another class of QSCs
whose synchronization capabilities reach the upper bound
by using the cyclic code Di and its augmented codes.

Theorem 4. Let n = 12m+ 7 be an odd prime, t = n−1
6ℓ

and q ∈ C
(6,n)
0 , where qℓ ≡ 1 mod n. For any nonnegative

integers cl and cr satisfying cl + cr < n, we can construct
a QSC with parameters (cl, cr)-[[n + cl + cr, 2|B|ℓ + 1]]q,
where |B| is the size of B in Lemma 5, and 0 ≤ |B| ≤
3t− 2 = n−4ℓ−1

2ℓ .

Proof. Since the size of C(s,n) is ℓ and ℓ|(2m+1), it is obvi-

ous that the cyclic code Di = ⟨g(6,n)i (x)g
(6,n)
i+1 (x)g

(6,n)
i+2 (x)⟩

has augmented codes if and only if g
(6,n)
i+j (x) (j ∈ {0, 1, 2})

has at least t = n−1
6ℓ irreducible factors over Fq. So we

let t ≥ 3. According to (b) in Lemma 5, the cyclic code

Di = ⟨g(6,n)i (x)g
(6,n)
i+1 (x)g

(6,n)
i+2 (x)⟩ has an augmented code

D with parameters
[
n, n+1

2 + |B|ℓ
]
. Taking a set B′ such

that B ⊂ B′ ⊂ ({i1, i2, . . . , it}∪{(i+1)1, (i+1)2, . . . , (i+
1)t} ∪ {(i + 2)1, (i + 2)2, . . . , (i + 2)t}), then we can get
a cyclic code D′ =

[
n, n+1

2 + |B′|ℓ
]
such that D ⊂ D′.

Then 0 ≤ |B| ≤ 3t − 2 = n−4ℓ−1
2ℓ . Furthermore, by

Lemmas 7 and 8, we can obtain a QSC with parameters
(cl, cr)-[[n+cl+cr, 2|B|ℓ+1]]q whose tolerable magnitude
against misalignment errors can reach the upper bound
n.

The following are two examples about QSCs which are
constructed by sextic cyclotomy. In particular, we can
give a lower bound of the error-correcting capability to-
wards bit errors and phase errors of QSCs constrtucted
by Di and its augmented codes.

Example 3. (a) Let n = 127 and q = 19 ∈ C
(6,n)
0 . In this

case, we only consider the construction of QSCs from the

cyclic code C0 = ⟨g(6,127)0 (x)⟩ and its augmented codes.
Then 0 ≤ |A| ≤ 5, by Theorem 3. From Example 2, let
A = {8, 16, 32, 64}, |A| = 4. Then the cyclic code C =

⟨ g
(6,127)
0 (x)∏
i∈A Mi(x)

⟩ with parameters [127, 118, 6]19 is optimal and

C⊥ ⊂ C. Furthermore, let A ⊂ A′ = {2, 4, 8, 16, 32, 64}.
Then the cyclic code C ′ = ⟨ g

(6,127)
0 (x)∏
i∈A′ Mi(x)

⟩ with parameters

[127, 124, 3]19 is optimal and C⊥ ⊂ C ⊂ C ′. Then by
Lemma 6, we can construct a (cl, cr)-[[127+cl+cr, 109]]19
QSC with cl+cr < 127, whose tolerable magnitude against
misalignment errors can reach the upper bound. More-
over, since the cyclic codes C and C ′ are optimal, the
QSC we construct has the optimal error-correcting capa-
bility towards bit errors and phase errors.

(b) Let the notations be defned as above. In this
case, we only consider the QSCs constructed from D0 =

⟨g(6,127)0 (x)g
(6,127)
1 (x)g

(6,127)
2 (x)⟩ and its augmented codes.

By Theorem 4, 0 ≤ |B| ≤ 19. From Example 2, let
B = {2}. Hence the augmented code of D0 is D =

⟨ g
(6,127)
0 (x)g

(6,127)
1 (x)g

(6,127)
2 (x)∏

i∈B Mi(x)
⟩. By Lemma 3, D0 is a dual-

containing code, then we have D⊥
0 ⊂ D0 ⊂ D. From

Lemma 6, we can construct a (cl, cr)-[[127 + cl + cr, 1]]19
QSC with cl+cr < 127, whose tolerable magnitude against
misalignment errors can reach the upper bound. From
Theorem 1, the lower bound of D0 satisfies d20 − d0 + 1 ≥
127, then the parameters of D0 are [127, 64,≥ 12]19 and
the parameter of D are [127, 67,≥ 12]19. According to
Lemma 6, the QSCs we constructed can correct up to 5
bit errors and 5 phase errors.

5 Conclusion

We study two classes of QSCs from dual-containing cyclic
codes obtained by sextic cyclotomic classes. The con-
structed QSCs possess the highest tolerance against mis-
alignment errors, besides some of them have optimal or
almost optimal error-correcting capability towards bit er-
rors and phase errors. Since the exact Hamming distances
of the cyclic codes used to construct QSCs are quite diffi-
cult to compute, the error-correcting capability of QSCs is
difficult to determine in theory. We hope that our future
work can make a breakthrough in this respect.
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