
International Journal of Network Security (VDOI: 1816-3548-2022-00024) 1

A Note on Two Outsourcing Algorithms of
Modular Exponentiations

Xinlei Qi1, Yunhai Zheng2, and Chengliang Tian2,3

(Corresponding author: Chengliang Tian)

School of Cyberspace Security, Xi’an University of Posts and Telecommunications1

Xi’an 710121, China

College of Computer Science & Technology, Qingdao University2

Qingdao 266071, China

Key Laboratory of Cryptography of Zhejiang Province, Hangzhou Normal University3

Hangzhou 311121, China

Email: tianchengliang@qdu.edu.cn

(Received Oct. 16, 2021; Revised and Accepted May 6, 2022; First Online May 9, 2022)

Abstract

Recently, Ren et al. presented two algorithms for out-
sourcing modular exponentiations [IEEE Transactions on
Cloud Computing, 9(1):145–154, 2021 ], which aim to
make the remote cloud server help resource-constrained
clients securely perform expensive modular exponentia-
tions in cryptography. In this note, we show their algo-
rithms are incorrect due to the misuse of the Euler the-
orem in the verification step. Moreover, we suggest a
remedial measure for the two-server algorithm.

Keywords: Cloud Computing; Computation Outsourcing;
Euler’s Theorem; Modular Exponentiation

1 Introduction

With the prevalence of cloud computing, outsourcing lo-
cally data-intensive activities such as large-scale data stor-
age and heavy computational tasks to a remote resource-
abundant cloud server has become a popular computing
paradigm [3, 9, 10, 12]. However, the sensitivity of the
local client’s data and the potential incredibility of the
cloud server bring many security concerns to this promis-
ing computing paradigm [1,2,14,16,18]. Therefore, how to
efficiently and securely outsource various large-scale com-
putations has increasingly attracted researchers’ atten-
tions [17]. Currently, due to the extremely large integer
operations in public-key cryptography, secure outsourc-
ing of heavy cryptographic computations has become a
hot topic [8, 13,19].

Given two large primes p, q satisfying q | p−1, an inte-
ger a ∈ Zq, and an integer u ∈ Z⋆

p such that uq ≡ 1 mod p,
computing ua mod p is a basic operation in the Digital
Signature Standard (DSS) of NIST [11], which needs to
perform about 1.5n modular multiplication for a n bits

exponent. In practice, the bit lengths of p and q could
be as large as 3072 and 256, respectively, which results in
the modular exponentiation operation being very expen-
sive for local devices with limited computation resources.
Consequently, the secure delegation of modular exponen-
tiations has been extensively investigated [4–7, 20, 21].
Among these, Ren et al. [15] recently proposed two al-
gorithms for outsourcing modular exponentiation to the
cloud servers. In this note, we investigate their algorithms
and point out a severe flaw in the verification step. Mean-
while, for the two-server case, we present a suggestion to
amend this flaw.

2 Review of Ren et al.’s Outsourc-
ing Algorithms

2.1 Ren et al.’s Outsourcing Algorithm
with Two Non-colluding Servers

Preprocessing: Client T generates three triples
(α, α−1, gα), (β, β−1, gβ), (t1, t

−1
1 , gt1), where

α, β, t1 ∈ Zq, g ∈ Z⋆
p and gq = 1 mod p. Let v = gα.

Logical Division: On inputting the base u and the ex-
ponent a, the client T first computes w, γ such
that u = wv mod p, αa = β + γ. Then, T
picks two random numbers t, h1 ∈ Zq, a prime
n which is co-prime with w, and computes s, h2

such that a ≡ φ(n)t + s mod q, φ(n)t = h1 +
h2, where φ(n) is the Euler function of n.
Hence, ua mod p = (wv)a mod p = gαawa mod
p = gβgγwa mod p = gβgγwswh1wh2 mod p.
Finally, T sends ((γ/t1, g

t1), (h1, w), (s, w)) and
((γ/t1, g

t1), (h2, w), (s, w)) to the servers U1 and U2,
respectively, in a random order.
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Cloud Computing: Servers U1 and U2 compute
((gt1)γ/t1 , wh1 , ws) and ((gt2)γ/t2 , wh2 , ws) in Z⋆

p,
respectively and return their results to T . Just
as the authors said in Section 3.1 of [15]: ’... the
servers output yx mod p when they receive the
inputs (x, y)’.

Client Verification and Recovery: Client T verifies
the correctness of the results returned from servers
by checking whether the following equations hold.

gγ = U1

(
γ/t1, g

t1
)

= U2

(
γ/t1, g

t1
)

(1)

U1(s, w) = U2(s, w) (2)

wh1wh2 = wφ(n)t ≡ 1 mod n (3)

If they hold, T recovers ua = gβgγwswh1wh2 mod p.

2.2 Ren et al.’s Outsourcing Algorithm
with Single Server

Preprocessing: Client T first generates a set of blind-
ing pairs {(α, gα, g−α) ,

(
β, gβ

)
,
(
θx, g

θx
)
,
(
t−1
x , gtx

)
,(

ξj , g
−ξj
)
, µj , k, g

Σk
i=1ξiµi , gΣ

b
i=k+1ξiµi} for some cho-

sen positive integer b and x = 1, 2, 3, 4, j =
1, 2, · · · , b + 3, k ∈ {2, · · · , b− 2}. Let v = gα.

Logical Division: On inputting the base u and the ex-
ponent a, the client T first computes w, γ such
that u = wv mod p, αa = γ + β. Then, T ran-
domly chooses t5 ∈ Zq and a prime n1, which is
co-prime with w, and computes s, r1, r2 and wj

such that a = φ(n1)t5 + s mod q, r1 = φ (n1) t5 −∑k
i=1 µi, r2 = φ (n1) t5 + s +

∑b
i=k+1 µi, and wj =

wg−ξj , j = 1, · · · , b + 3, where φ(n1) denotes the
Eulerfunction of n1. Finally, T randomly chooses
a prime n2, which is relatively prime with g and
computes t6, t7, t8, t9 such that γ ≡ φ (n2) t6 +
θ1 mod q, sξb+1 ≡ φ (n2) t7 + θ2 mod q, r1ξb+2 ≡
φ (n2) t8 + θ3 mod q, r2ξb+3 ≡ φ (n2) t9 + θ4 mod q,
where φ(n2) = n2 − 1 is the Eulerfunction of n2.
Now,

ua = (wv)a

= wagαa

= wφ(n1)t5+sgγgβ

= wφ(n1)t5wsgφ(n2)t6+θ1gβ

= wφ(n1)t5ws
b+1g

sξb+1gφ(n2)t6+θ1gβ

= wφ(n1)t5ws
b+1g

φ(n2)t7+θ2gφ(n2)t6+θ1gβ .

Hence, T sends ((φ(n2)t6 + θ1)/t1, g
t1),

((φ(n2)t7 + θ2)/t2, g
t2), ((φ(n2)t8 + θ3)/t3, g

t3),
((φ(n2)t9+θ4)/t4, g

t4), (µj , wj), (s, wb+1), (r1, wb+2),
and (r2, wb+3) to the server U in a random order,
where j = 1, 2, · · · , b.

Cloud Computing: The server U computes η1 =
(gt1)(φ(n2)t6+θ1)/t1 , η2 = (gt2)(φ(n2)t7+θ2)/t2 , η3 =
(gt3)(φ(n2)t8+θ3)/t3 , η4 = (gt4)(φ(n2)t9+θ4)/t4 and

w
µj

j , ws
b+1, w

r1
b+2, w

r2
b+3 in Z⋆

p for j = 1, · · · , b, and re-
turns the results to T .

Client Verification and Recovery: T verifies the cor-
rectness of the results from U by checking whether
the following equations hold.

ηx ≡ gθx mod n2, x = 1, 2, 3, 4 (4)

wr1
b+2

(
k∏

i=1

wµi

i

)
· g

∑k
i=1 ξiµiη3 = wφ(n1)ts ≡ 1 mod n1

(5)

wr2
b+3η4 ≡

(
b∏

i=k+1

wµi

j

)
· g

∑b
i=k+1 ξiµiws

b+1η2 mod n1.

(6)

If they hold, T recovers ua ≡
wφ(n1)t5ws

b+1η1η2g
β mod p.

3 Analysis and Revision

3.1 Analysis of the Algorithm with Two
Servers

As mentioned in Section 3.1 of [15], the servers out-
put yx mod p when they receive the inputs (x, y). If
the servers are honest, the returned results can pass the
verification Equation (1) and Equation (2). The veri-
fication Equation (3) is from the speculation wφ(n)t =
wh1+h2 = wh1wh2 ≡ 1 mod n. However, after send-
ing pairs (h1, w), (h2, w) to servers, the values wh1 , wh2

are computed not in Z, but in Z⋆
p. Since, generally,

wh1 mod p ·wh2 mod p ̸= 1 mod n, the verification Equa-
tion (3) doesn’t hold. That is, even if the servers U1 and
U2 perform the specified computation task honestly, the
client T will reject their results. We illustrated this flaw
with the toy Example 1 in the appendix. We illustrate the
algorithm’s incorrectness with the following toy example.

Example 1. Let q = 3, p = 7, u = 4, a = 2.

� Client T chooses the parameters g = 4, α = 2, β = 2,
t1 = 2, and precomputes gα = 2, gβ = 2, gt1 = 2,
and t−1

1 = 2. Let v = gα = 2.

� On inputting (u, a) = (4, 2), the client T first com-
putes w = uv−1 = 2 and γ = αa − β = 2 · 2 − 2 =
2. Then, T chooses t = 2, h1 = 1 and a prime
n = 3, and computes s = a − φ(n)t mod 3 = 1,
h2 = φ(n)t − h1 = 3. Finally, T sends (1, 2), (1, 2)
and (1, 2) to the server U1, and sends (1, 2), (3, 2)
and (1, 2) to the server U2.

� Server U1 returns gγ = wh1 = ws = 2 mod 7, U2

returns gγ = ws = 2 mod 7, wh2 = 1 mod 7.

� The client T verifies wh1wh2 = 2 · 1 ̸= 1 mod 3, and
thus, rejects the results.
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A natural idea to circumvent this flaw is that client T
inquiries the value of yx in Z or Z⋆

n instead of in Z⋆
p.

1) If in Z, for honest servers, the client can obtain the
correct result. However, it is impractical. In practice,
w can be as large as 3072 bits [11] and, to be against
exhaustive attack, hi should be as large as 64 bits.
Hence, whi could be an integer with 3072 · 264bits≈
232TB. Such huge a number is impossible to store
and handle for a resource-constrained client, even for
a resource-abundant server.

2) If in Z⋆
n, although the result returned from an honest

cloud can pass the verification, the client T can not
recover the correct result which should be calculated
in Z⋆

p. Also, this can be easily illuminated with the
following toy example.

Example 2. Let q = 3, p = 7, u = 4, a = 2.

� Client T chooses the parameters g = 4, α = 2, β = 2,
t1 = 2, and precomputes gα = 2, gβ = 2, gt1 = 2,
and t−1

1 = 2. Let v = gα = 2.

� On inputting (u, a) = (4, 2), the client T first com-
putes w = uv−1 = 2 and γ = αa − β = 2 · 2 − 2 =
2. Then, T chooses t = 2, h1 = 1 and a prime
n = 3, and computes s = a − φ(n)t mod 3 = 1,
h2 = φ(n)t − h1 = 3. Finally, T sends (1, 2), (1, 2)
and (1, 2) to the server U1, and sends (1, 2), (3, 2)
and (1, 2) to the server U2.

� Server U1 returns gγ mod n = wh1 mod n = ws mod
n = 21 mod 3 = 2, U2 returns gγ mod n = ws mod
n = 21 mod 3 = 2, wh2 mod n = 23 mod 3 = 2.

� The client T verifies wh1wh2 = 2 · 2 = 1 mod
3, and thus, accepts the result. Then T recovers
gβgγwswh1wh2 mod p = 2 · 2 · 2 · 2 · 2 mod 7 = 4.
However, the actual result ua mod p = 42 mod 7 = 2.
Therefore, ua ̸≡ wφ(n1)t5ws

b+1η1η2g
β mod p.

Overall, both of the above simple revisions are infeasi-
ble.

3.2 Analysis of the algorithm with single
server

Similarly, for the single-server algorithm, the verifica-
tion equations are incorrect due to the following simple
observation: by Euler’s theorem, mφ(n) ≡ 1 mod n for
some prime n and any integer m with gcd(m,n) = 1,
but, in general mφ(n) mod p ̸= 1 mod n. According to
their proposed algorithm, it is easy to verify that ηx =

gφ(n2)tx+5gθx mod p, wr1
b+2

(∏k
i=1 w

µi

i

)
· g

∑k
i=1 ξiµiη3 =

wφ(n1)ts mod p, and

wr2
b+3η4

((
b∏

i=k+1

wµi

j

)
· g

∑b
i=k+1 ξiµiws

b+1η2

)−1

= wφ(n1)ts mod p.

Therefore, based on the above-mentioned observation, the
verification Equations (4)-(6) generally fail even for an
honest server. See a toy example below.

Example 3. Select q = 3, p = 7, u = 4, a = 2

� Client T chooses g = 4, b = 4, k = 2, α = 2, β = 2,
ti = θi = 2, ξj = µj = 2, and precomputes v = gα =

2, gβ = 2, gti = gθi = 2, gξj = 2, g
∑k

i=1 µiξi = 2,

g
∑b

i=k+1 µiξi = 2, where i = 1, 2, 3, 4, j = 1, · · · , 7.

� On inputting (u, a) = (4, 2), client T first computes
w = uv−1 = 2 and γ = αa−β = 2. Then, T chooses
t5 = 2, n1 = 3, and computes s = 1, r1 = 0, r2 = 9,
wj = 8 for j = 1, · · · , 7. Finally, T chooses a prime
n2 = 3, computes t6 = 0, t7 = 0, t8 = 2, t9 = 2, and
sends (4, 2), (4, 2), (12, 2), (12, 2), (µj , wj) = (2, 8),
(s, wb+1) = (1, 8), (r1, wb+2) = (0, 8), (r2, wb+3) =
(9, 8) to the server U .

� Server U computes and returns η1 = η2 = 2, η3 =
η4 = 1, w

µj

j = ws
b+1 = wr1

b+2 = wr2
b+3 = 1.

� The client T verifies the server returned results.
Obviously, ηi = gθi mod n2 for i = 1, 2 and
ηi ̸= gθi mod n2 for i = 3, 4. Meanwhile,

wr1
b+2

(∏k
i=1 w

µi

i

)
· g

∑k
i=1 ξiµiη3 = 2 ̸= 1 mod n1.

Thus, T rejects the corrected results.

3.3 Revision

For the two-server algorithm, we can make a minor adap-
tation to amend the above-mentioned flaw. In the Log-
ical Division step, we adapt the parameter n to be
a large prime with the same size as p. In the Cloud
Computing step, the server U1 is required to compute
the values of ((gt1)γ/t1 mod N,wh1 mod N,ws mod N),
and the server U2 is required to compute the values of
((gt2)γ/t2 mod N,wh2 mod N,ws mod N), where N = pn
and is sent to the servers by the client. In the Client
Verification and Recovery step, client T verifies the
correctness of the results returned from servers by check-
ing:

U1

(
γ/t1, g

t1
)

= U2

(
γ/t1, g

t1
)

U1(s, w) = U2(s, w),

gγ = U1

(
γ/t1, g

t1
)

mod p,

U1(h1, w)U2(h2, w) mod n = wφ(n)t mod n

= 1.

If they hold, T recovers

ua = gβgγU1(s, w)U1(h1, w)U(h2, w) mod p.

The correctness of our revised version is from the fol-
lowing basic fact: for any integer M , M mod N mod
p = M mod p, M mod N mod n = M mod n. If the
servers are honest, then U1(γ/t1, g

t1) = U2(γ/t1, g
t1) =

(gt1)γ/t1 mod N , U1(s, w) = U2(s, w) = ws mod N ,
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U1(h1, w) = wh1 mod N , and U2(h2, w) = wh2 mod
N . Hence, U1 (γ/t1, g

t1) mod p = (gt1)γ/t1 mod N mod
p = (gt1)γ/t1 mod p = gγ , and U1(h1, w)U2(h2, w) =
(wh1 mod N · wh2 mod N) mod n = (wh1wh2) mod n =
wφ(n)t mod n = 1. All the verification equations hold.
Meanwhile,

gβgγU1(s, w)U1(h1, w)U(h2, w) mod p

= (gβgγ(ws mod N)(wh1 mod N)(wh2 mod N)) mod p

= (gβgγwswh1wh2) mod p = ua.

The privacy and the efficiency analysis are essentially
the same as that in [15]. It is worth mentioning that, as
a byproduct, the revised algorithm can also protect the
privacy of the modulo number p. The security is based
on the hardness of factoring large integers.

4 Conclusion

We point out a severe misuse of Euler’s theorem in Ren
et al.’s algorithms, which results in their algorithms in-
correct. Moreover, we modify the two-server algorithm to
amend this flaw. However, for the single-server algorithm,
it may need a fundamental rework.
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