
International Journal of Network Security (VDOI: 1816-3548-2022-00024) 1

A Note on Two Outsourcing Algorithms of
Modular Exponentiations

Xinlei Qi1, Yunhai Zheng2, and Chengliang Tian2,3

(Corresponding author: Chengliang Tian)

School of Cyberspace Security, Xi’an University of Posts and Telecommunications1

Xi’an 710121, China

College of Computer Science & Technology, Qingdao University2

Qingdao 266071, China

Key Laboratory of Cryptography of Zhejiang Province, Hangzhou Normal University3

Hangzhou 311121, China

Email: tianchengliang@qdu.edu.cn

(Received Oct. 16, 2021; Revised and Accepted May 6, 2022; First Online May 9, 2022)

Abstract

Recently, Ren et al. presented two algorithms for out-
sourcing modular exponentiations [IEEE Transactions on
Cloud Computing, 9(1):145–154, 2021 ], which aim to
make the remote cloud server help resource-constrained
clients securely perform expensive modular exponentia-
tions in cryptography. In this note, we show their algo-
rithms are incorrect due to the misuse of the Euler the-
orem in the verification step. Moreover, we suggest a
remedial measure for the two-server algorithm.

Keywords: Cloud Computing; Computation Outsourcing;
Euler’s Theorem; Modular Exponentiation

1 Introduction

With the prevalence of cloud computing, outsourcing lo-
cally data-intensive activities such as large-scale data stor-
age and heavy computational tasks to a remote resource-
abundant cloud server has become a popular computing
paradigm [3, 9, 10, 12]. However, the sensitivity of the
local client’s data and the potential incredibility of the
cloud server bring many security concerns to this promis-
ing computing paradigm [1,2,14,16,18]. Therefore, how to
efficiently and securely outsource various large-scale com-
putations has increasingly attracted researchers’ atten-
tions [17]. Currently, due to the extremely large integer
operations in public-key cryptography, secure outsourc-
ing of heavy cryptographic computations has become a
hot topic [8, 13,19].

Given two large primes p, q satisfying q | p−1, an inte-
ger a ∈ Zq, and an integer u ∈ Z⋆

p such that uq ≡ 1 mod p,
computing ua mod p is a basic operation in the Digital
Signature Standard (DSS) of NIST [11], which needs to
perform about 1.5n modular multiplication for a n bits

exponent. In practice, the bit lengths of p and q could
be as large as 3072 and 256, respectively, which results in
the modular exponentiation operation being very expen-
sive for local devices with limited computation resources.
Consequently, the secure delegation of modular exponen-
tiations has been extensively investigated [4–7, 20, 21].
Among these, Ren et al. [15] recently proposed two al-
gorithms for outsourcing modular exponentiation to the
cloud servers. In this note, we investigate their algorithms
and point out a severe flaw in the verification step. Mean-
while, for the two-server case, we present a suggestion to
amend this flaw.

2 Review of Ren et al.’s Outsourc-
ing Algorithms

2.1 Ren et al.’s Outsourcing Algorithm
with Two Non-colluding Servers

Preprocessing: Client T generates three triples
(α, α−1, gα), (β, β−1, gβ), (t1, t

−1
1 , gt1), where

α, β, t1 ∈ Zq, g ∈ Z⋆
p and gq = 1 mod p. Let v = gα.

Logical Division: On inputting the base u and the ex-
ponent a, the client T first computes w, γ such
that u = wv mod p, αa = β + γ. Then, T
picks two random numbers t, h1 ∈ Zq, a prime
n which is co-prime with w, and computes s, h2

such that a ≡ φ(n)t + s mod q, φ(n)t = h1 +
h2, where φ(n) is the Euler function of n.
Hence, ua mod p = (wv)a mod p = gαawa mod
p = gβgγwa mod p = gβgγwswh1wh2 mod p.
Finally, T sends ((γ/t1, g

t1), (h1, w), (s, w)) and
((γ/t1, g

t1), (h2, w), (s, w)) to the servers U1 and U2,
respectively, in a random order.



International Journal of Network Security (VDOI: 1816-3548-2022-00024) 2

Cloud Computing: Servers U1 and U2 compute
((gt1)γ/t1 , wh1 , ws) and ((gt2)γ/t2 , wh2 , ws) in Z⋆

p,
respectively and return their results to T . Just
as the authors said in Section 3.1 of [15]: ’... the
servers output yx mod p when they receive the
inputs (x, y)’.

Client Verification and Recovery: Client T verifies
the correctness of the results returned from servers
by checking whether the following equations hold.

gγ = U1

(
γ/t1, g

t1
)

= U2

(
γ/t1, g

t1
)

(1)

U1(s, w) = U2(s, w) (2)

wh1wh2 = wφ(n)t ≡ 1 mod n (3)

If they hold, T recovers ua = gβgγwswh1wh2 mod p.

2.2 Ren et al.’s Outsourcing Algorithm
with Single Server

Preprocessing: Client T first generates a set of blind-
ing pairs {(α, gα, g−α) ,

(
β, gβ

)
,
(
θx, g

θx
)
,
(
t−1
x , gtx

)
,(

ξj , g
−ξj
)
, µj , k, g

Σk
i=1ξiµi , gΣ

b
i=k+1ξiµi} for some cho-

sen positive integer b and x = 1, 2, 3, 4, j =
1, 2, · · · , b + 3, k ∈ {2, · · · , b− 2}. Let v = gα.

Logical Division: On inputting the base u and the ex-
ponent a, the client T first computes w, γ such
that u = wv mod p, αa = γ + β. Then, T ran-
domly chooses t5 ∈ Zq and a prime n1, which is
co-prime with w, and computes s, r1, r2 and wj

such that a = φ(n1)t5 + s mod q, r1 = φ (n1) t5 −∑k
i=1 µi, r2 = φ (n1) t5 + s +

∑b
i=k+1 µi, and wj =

wg−ξj , j = 1, · · · , b + 3, where φ(n1) denotes the
Eulerfunction of n1. Finally, T randomly chooses
a prime n2, which is relatively prime with g and
computes t6, t7, t8, t9 such that γ ≡ φ (n2) t6 +
θ1 mod q, sξb+1 ≡ φ (n2) t7 + θ2 mod q, r1ξb+2 ≡
φ (n2) t8 + θ3 mod q, r2ξb+3 ≡ φ (n2) t9 + θ4 mod q,
where φ(n2) = n2 − 1 is the Eulerfunction of n2.
Now,

ua = (wv)a

= wagαa

= wφ(n1)t5+sgγgβ

= wφ(n1)t5wsgφ(n2)t6+θ1gβ

= wφ(n1)t5ws
b+1g

sξb+1gφ(n2)t6+θ1gβ

= wφ(n1)t5ws
b+1g

φ(n2)t7+θ2gφ(n2)t6+θ1gβ .

Hence, T sends ((φ(n2)t6 + θ1)/t1, g
t1),

((φ(n2)t7 + θ2)/t2, g
t2), ((φ(n2)t8 + θ3)/t3, g

t3),
((φ(n2)t9+θ4)/t4, g

t4), (µj , wj), (s, wb+1), (r1, wb+2),
and (r2, wb+3) to the server U in a random order,
where j = 1, 2, · · · , b.

Cloud Computing: The server U computes η1 =
(gt1)(φ(n2)t6+θ1)/t1 , η2 = (gt2)(φ(n2)t7+θ2)/t2 , η3 =
(gt3)(φ(n2)t8+θ3)/t3 , η4 = (gt4)(φ(n2)t9+θ4)/t4 and

w
µj

j , ws
b+1, w

r1
b+2, w

r2
b+3 in Z⋆

p for j = 1, · · · , b, and re-
turns the results to T .

Client Verification and Recovery: T verifies the cor-
rectness of the results from U by checking whether
the following equations hold.

ηx ≡ gθx mod n2, x = 1, 2, 3, 4 (4)

wr1
b+2

(
k∏

i=1

wµi

i

)
· g

∑k
i=1 ξiµiη3 = wφ(n1)ts ≡ 1 mod n1

(5)

wr2
b+3η4 ≡

(
b∏

i=k+1

wµi

j

)
· g

∑b
i=k+1 ξiµiws

b+1η2 mod n1.

(6)

If they hold, T recovers ua ≡
wφ(n1)t5ws

b+1η1η2g
β mod p.

3 Analysis and Revision

3.1 Analysis of the Algorithm with Two
Servers

As mentioned in Section 3.1 of [15], the servers out-
put yx mod p when they receive the inputs (x, y). If
the servers are honest, the returned results can pass the
verification Equation (1) and Equation (2). The veri-
fication Equation (3) is from the speculation wφ(n)t =
wh1+h2 = wh1wh2 ≡ 1 mod n. However, after send-
ing pairs (h1, w), (h2, w) to servers, the values wh1 , wh2

are computed not in Z, but in Z⋆
p. Since, generally,

wh1 mod p ·wh2 mod p ̸= 1 mod n, the verification Equa-
tion (3) doesn’t hold. That is, even if the servers U1 and
U2 perform the specified computation task honestly, the
client T will reject their results. We illustrated this flaw
with the toy Example 1 in the appendix. We illustrate the
algorithm’s incorrectness with the following toy example.

Example 1. Let q = 3, p = 7, u = 4, a = 2.

� Client T chooses the parameters g = 4, α = 2, β = 2,
t1 = 2, and precomputes gα = 2, gβ = 2, gt1 = 2,
and t−1

1 = 2. Let v = gα = 2.

� On inputting (u, a) = (4, 2), the client T first com-
putes w = uv−1 = 2 and γ = αa − β = 2 · 2 − 2 =
2. Then, T chooses t = 2, h1 = 1 and a prime
n = 3, and computes s = a − φ(n)t mod 3 = 1,
h2 = φ(n)t − h1 = 3. Finally, T sends (1, 2), (1, 2)
and (1, 2) to the server U1, and sends (1, 2), (3, 2)
and (1, 2) to the server U2.

� Server U1 returns gγ = wh1 = ws = 2 mod 7, U2

returns gγ = ws = 2 mod 7, wh2 = 1 mod 7.

� The client T verifies wh1wh2 = 2 · 1 ̸= 1 mod 3, and
thus, rejects the results.



International Journal of Network Security (VDOI: 1816-3548-2022-00024) 3

A natural idea to circumvent this flaw is that client T
inquiries the value of yx in Z or Z⋆

n instead of in Z⋆
p.

1) If in Z, for honest servers, the client can obtain the
correct result. However, it is impractical. In practice,
w can be as large as 3072 bits [11] and, to be against
exhaustive attack, hi should be as large as 64 bits.
Hence, whi could be an integer with 3072 · 264bits≈
232TB. Such huge a number is impossible to store
and handle for a resource-constrained client, even for
a resource-abundant server.

2) If in Z⋆
n, although the result returned from an honest

cloud can pass the verification, the client T can not
recover the correct result which should be calculated
in Z⋆

p. Also, this can be easily illuminated with the
following toy example.

Example 2. Let q = 3, p = 7, u = 4, a = 2.

� Client T chooses the parameters g = 4, α = 2, β = 2,
t1 = 2, and precomputes gα = 2, gβ = 2, gt1 = 2,
and t−1

1 = 2. Let v = gα = 2.

� On inputting (u, a) = (4, 2), the client T first com-
putes w = uv−1 = 2 and γ = αa − β = 2 · 2 − 2 =
2. Then, T chooses t = 2, h1 = 1 and a prime
n = 3, and computes s = a − φ(n)t mod 3 = 1,
h2 = φ(n)t − h1 = 3. Finally, T sends (1, 2), (1, 2)
and (1, 2) to the server U1, and sends (1, 2), (3, 2)
and (1, 2) to the server U2.

� Server U1 returns gγ mod n = wh1 mod n = ws mod
n = 21 mod 3 = 2, U2 returns gγ mod n = ws mod
n = 21 mod 3 = 2, wh2 mod n = 23 mod 3 = 2.

� The client T verifies wh1wh2 = 2 · 2 = 1 mod
3, and thus, accepts the result. Then T recovers
gβgγwswh1wh2 mod p = 2 · 2 · 2 · 2 · 2 mod 7 = 4.
However, the actual result ua mod p = 42 mod 7 = 2.
Therefore, ua ̸≡ wφ(n1)t5ws

b+1η1η2g
β mod p.

Overall, both of the above simple revisions are infeasi-
ble.

3.2 Analysis of the algorithm with single
server

Similarly, for the single-server algorithm, the verifica-
tion equations are incorrect due to the following simple
observation: by Euler’s theorem, mφ(n) ≡ 1 mod n for
some prime n and any integer m with gcd(m,n) = 1,
but, in general mφ(n) mod p ̸= 1 mod n. According to
their proposed algorithm, it is easy to verify that ηx =

gφ(n2)tx+5gθx mod p, wr1
b+2

(∏k
i=1 w

µi

i

)
· g

∑k
i=1 ξiµiη3 =

wφ(n1)ts mod p, and

wr2
b+3η4

((
b∏

i=k+1

wµi

j

)
· g

∑b
i=k+1 ξiµiws

b+1η2

)−1

= wφ(n1)ts mod p.

Therefore, based on the above-mentioned observation, the
verification Equations (4)-(6) generally fail even for an
honest server. See a toy example below.

Example 3. Select q = 3, p = 7, u = 4, a = 2

� Client T chooses g = 4, b = 4, k = 2, α = 2, β = 2,
ti = θi = 2, ξj = µj = 2, and precomputes v = gα =

2, gβ = 2, gti = gθi = 2, gξj = 2, g
∑k

i=1 µiξi = 2,

g
∑b

i=k+1 µiξi = 2, where i = 1, 2, 3, 4, j = 1, · · · , 7.

� On inputting (u, a) = (4, 2), client T first computes
w = uv−1 = 2 and γ = αa−β = 2. Then, T chooses
t5 = 2, n1 = 3, and computes s = 1, r1 = 0, r2 = 9,
wj = 8 for j = 1, · · · , 7. Finally, T chooses a prime
n2 = 3, computes t6 = 0, t7 = 0, t8 = 2, t9 = 2, and
sends (4, 2), (4, 2), (12, 2), (12, 2), (µj , wj) = (2, 8),
(s, wb+1) = (1, 8), (r1, wb+2) = (0, 8), (r2, wb+3) =
(9, 8) to the server U .

� Server U computes and returns η1 = η2 = 2, η3 =
η4 = 1, w

µj

j = ws
b+1 = wr1

b+2 = wr2
b+3 = 1.

� The client T verifies the server returned results.
Obviously, ηi = gθi mod n2 for i = 1, 2 and
ηi ̸= gθi mod n2 for i = 3, 4. Meanwhile,

wr1
b+2

(∏k
i=1 w

µi

i

)
· g

∑k
i=1 ξiµiη3 = 2 ̸= 1 mod n1.

Thus, T rejects the corrected results.

3.3 Revision

For the two-server algorithm, we can make a minor adap-
tation to amend the above-mentioned flaw. In the Log-
ical Division step, we adapt the parameter n to be
a large prime with the same size as p. In the Cloud
Computing step, the server U1 is required to compute
the values of ((gt1)γ/t1 mod N,wh1 mod N,ws mod N),
and the server U2 is required to compute the values of
((gt2)γ/t2 mod N,wh2 mod N,ws mod N), where N = pn
and is sent to the servers by the client. In the Client
Verification and Recovery step, client T verifies the
correctness of the results returned from servers by check-
ing:

U1

(
γ/t1, g

t1
)

= U2

(
γ/t1, g

t1
)

U1(s, w) = U2(s, w),

gγ = U1

(
γ/t1, g

t1
)

mod p,

U1(h1, w)U2(h2, w) mod n = wφ(n)t mod n

= 1.

If they hold, T recovers

ua = gβgγU1(s, w)U1(h1, w)U(h2, w) mod p.

The correctness of our revised version is from the fol-
lowing basic fact: for any integer M , M mod N mod
p = M mod p, M mod N mod n = M mod n. If the
servers are honest, then U1(γ/t1, g

t1) = U2(γ/t1, g
t1) =

(gt1)γ/t1 mod N , U1(s, w) = U2(s, w) = ws mod N ,



International Journal of Network Security (VDOI: 1816-3548-2022-00024) 4

U1(h1, w) = wh1 mod N , and U2(h2, w) = wh2 mod
N . Hence, U1 (γ/t1, g

t1) mod p = (gt1)γ/t1 mod N mod
p = (gt1)γ/t1 mod p = gγ , and U1(h1, w)U2(h2, w) =
(wh1 mod N · wh2 mod N) mod n = (wh1wh2) mod n =
wφ(n)t mod n = 1. All the verification equations hold.
Meanwhile,

gβgγU1(s, w)U1(h1, w)U(h2, w) mod p

= (gβgγ(ws mod N)(wh1 mod N)(wh2 mod N)) mod p

= (gβgγwswh1wh2) mod p = ua.

The privacy and the efficiency analysis are essentially
the same as that in [15]. It is worth mentioning that, as
a byproduct, the revised algorithm can also protect the
privacy of the modulo number p. The security is based
on the hardness of factoring large integers.

4 Conclusion

We point out a severe misuse of Euler’s theorem in Ren
et al.’s algorithms, which results in their algorithms in-
correct. Moreover, we modify the two-server algorithm to
amend this flaw. However, for the single-server algorithm,
it may need a fundamental rework.

Acknowledgments

This study was supported by National Natural Science
Foundation of China (61702294), National Development
Foundation of Cryptography (MMJJ20170126) and the
Open Research Fund of Key Laboratory of Cryptography
of Zhejiang Province (ZCL21003).

References

[1] D. S. AbdElminaam, “Improving the security of
cloud computing by building new hybrid cryptogra-
phy algorithms,” International Journal of Electron-
ics and Information Engineering, vol. 8, no. 1, pp.
40–48, 2018.

[2] Z. Cao and L. Liu, “A note on two schemes for
secure outsourcing of linear programming,” Int. J.
Netw. Secur., vol. 19, no. 2, pp. 323–326, 2017. [On-
line]. Available: http://ijns.jalaxy.com.tw/contents/
ijns-v19-n2/ijns-2017-v19-n2-p323-326.pdf

[3] M. Chen, C. Liu, and M. Hwang, “Securedropbox:
a file encryption system suitable for cloud storage
services,” in ACM Cloud and Autonomic Computing
Conference, CAC ’13, Miami, FL, USA - August
05 - 09, 2013, S. Hariri and A. Sill, Eds.
ACM, 2013, pp. 21:1–21:2. [Online]. Available:
https://doi.org/10.1145/2494621.2494642

[4] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New al-
gorithms for secure outsourcing of modular exponen-
tiations,” in Computer Security – ESORICS 2012,
S. Foresti, M. Yung, and F. Martinelli, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp.
541–556.

[5] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New al-
gorithms for secure outsourcing of modular exponen-
tiations,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 25, no. 9, pp. 2386 – 2396,
2014.

[6] C. Chevalier, F. Laguillaumie, and D. Vergnaud,
“Privately outsourcing exponentiation to a single
server: Cryptanalysis and optimal constructions,” in
Computer Security – ESORICS 2016, I. Askoxylakis,
S. Ioannidis, S. Katsikas, and C. Meadows, Eds.
Cham: Springer International Publishing, 2016, pp.
261–278.

[7] Y. Ding, Z. Xu, J. Ye, and K.-K. R. Choo,
“Secure outsourcing of modular exponentiations
under single untrusted programme model,” J.
Comput. Syst. Sci., vol. 90, no. C, pp. 1–13, Dec.
2017. [Online]. Available: https://doi.org/10.1016/j.
jcss.2016.11.005

[8] S. Hohenberger and A. Lysyanskaya, “How to se-
curely outsource cryptographic computations,” in
Theory of Cryptography, J. Kilian, Ed. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2005, pp. 264–
282.

[9] W. Hsien, C. C. Yang, and M. Hwang, “A
survey of public auditing for secure data stor-
age in cloud computing,” Int. J. Netw. Se-
cur., vol. 18, no. 1, pp. 133–142, 2016. [On-
line]. Available: http://ijns.jalaxy.com.tw/contents/
ijns-v18-n1/ijns-2016-v18-n1-p133-142.pdf

[10] M. Hwang, T. Sun, and C. Lee, “Achieving
dynamic data guarantee and data confidentiality
of public auditing in cloud storage service,” J.
Circuits Syst. Comput., vol. 26, no. 5, pp.
1 750 072:1–1 750 072:16, 2017. [Online]. Available:
https://doi.org/10.1142/S0218126617500724

[11] C. F. Kerry and P. D. Gallagher, “Digital signature
standard (dss),” FIPS PUB, pp. 186–4, 2013.

[12] C. Liu, W. Hsien, C. C. Yang, and M. Hwang, “A
survey of public auditing for shared data storage
with user revocation in cloud computing,” Int. J.
Netw. Secur., vol. 18, no. 4, pp. 650–666, 2016. [On-
line]. Available: http://ijns.jalaxy.com.tw/contents/
ijns-v18-n4/ijns-2016-v18-n4-p650-666.pdf

[13] L. Liu and Z. Cao, “A note on ”efficient algorithms
for secure outsourcing of bilinear pairings”,” Inter-
national Journal of Electronics and Information En-
gineering, vol. 5, no. 1, pp. 30–36, 2016.

[14] P. S. Masoumeh Zareapoor and M. A. Alam, “Estab-
lishing safe cloud: Ensuring data security and per-
formance evaluation,” International Journal of Elec-
tronics and Information Engineering, vol. 1, no. 2,
pp. 88–99, 2014.

[15] Y. Ren, M. Dong, Z. Qian, X. Zhang, and G. Feng,
“Efficient algorithm for secure outsourcing of modu-
lar exponentiation with single server,” IEEE Trans-
actions on Cloud Computing, vol. 9, no. 1, pp. 145–
154, 2021.

http://ijns.jalaxy.com.tw/contents/ijns-v19-n2/ijns-2017-v19-n2-p323-326.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v19-n2/ijns-2017-v19-n2-p323-326.pdf
https://doi.org/10.1145/2494621.2494642
https://doi.org/10.1016/j.jcss.2016.11.005
https://doi.org/10.1016/j.jcss.2016.11.005
http://ijns.jalaxy.com.tw/contents/ijns-v18-n1/ijns-2016-v18-n1-p133-142.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v18-n1/ijns-2016-v18-n1-p133-142.pdf
https://doi.org/10.1142/S0218126617500724
http://ijns.jalaxy.com.tw/contents/ijns-v18-n4/ijns-2016-v18-n4-p650-666.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v18-n4/ijns-2016-v18-n4-p650-666.pdf


International Journal of Network Security (VDOI: 1816-3548-2022-00024) 5

[16] M. A. D. Saeid Rezaei and M. Bayat, “A lightweight
and efficient data sharing scheme for cloud comput-
ing,” International Journal of Electronics and Infor-
mation Engineering, vol. 9, no. 2, pp. 115–131, 2018.

[17] Z. Shan, K. Ren, M. Blanton, and C. Wang, “Practi-
cal secure computation outsourcing: A survey,” Acm
Computing Surveys, vol. 51, no. 2, pp. 1–40, 2018.

[18] J. Singh, “Cyber-attacks in cloud computing: A case
study,” International Journal of Electronics and In-
formation Engineering, vol. 1, no. 2, pp. 78–87, 2014.

[19] C. Tian, J. Yu, H. Zhang, H. Xue, C. Wang, and
K. Ren, “Novel secure outsourcing of modular in-
version for arbitrary and variable modulus,” IEEE
Transactions on Services Computing, vol. 15, no. 1,
pp. 241–253, 2022.

[20] Y. Wang, Q. Wu, D. S. Wong, B. Qin, S. S. M. Chow,
Z. Liu, and X. Tan, “Securely outsourcing expo-
nentiations with single untrusted program for cloud
storage,” in Computer Security - ESORICS 2014,
M. Kuty lowski and J. Vaidya, Eds. Cham: Springer
International Publishing, 2014, pp. 326–343.

[21] K. Zhou, M. H. Afifi, and J. Ren, “Expsos: Secure
and verifiable outsourcing of exponentiation opera-
tions for mobile cloud computing,” IEEE Transac-
tions on Information Forensics and Security, vol. 12,
no. 11, pp. 2518–2531, Nov 2017.

Biography

Xinlei Qi received the B.S. and M.S. degrees in mathe-
matics from Northwest University, Xi’an, China, in 2006
and 2009, respectively. He is currently with the School
of Cyberspace Security, Xi’an University of Posts and
Telecommunications, as a Lecturer. His research interests
include privacy preservation and cloud computing secu-
rity

Yunhai Zheng received the B.E. degree in automation
from Qingdao University in 2017. He is currently pursu-
ing the M.S. degree in the College of Computer Science
and Technology, Qingdao University. Her research inter-
ests include cloud computing security, secure computation
outsourcing. .

Chengliang Tian received the B.S. and M.S. degrees
in mathematics from Northwest University, Xi’an, China,
in 2006 and 2009, respectively, and the Ph.D. degree in
information security from Shandong University, Ji’nan,
China, in 2013. He held a post-doctoral position with
the State Key Laboratory of Information Security, Insti-
tute of Information Engineering, Chinese Academy of Sci-
ences, Beijing. He is currently with the College of Com-
puter Science and Technology, Qingdao University, as an
Associate Professor. His research interests include lattice-
based cryptography and cloud computing security.


	Introduction
	Review of Ren et al.'s Outsourcing Algorithms 
	Ren et al.'s Outsourcing Algorithm with Two Non-colluding Servers
	Ren et al.'s Outsourcing Algorithm with Single Server

	Analysis and Revision
	Analysis of the Algorithm with Two Servers
	Analysis of the algorithm with single server
	Revision

	Conclusion
	REFERENCES

