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Abstract

To minimize communication overhead and safeguard indi-
vidual data privacy, the aggregator in the intelligent grid
aggregates the data collected by the user’s smart meter
(SM). In the field of smart grids, data aggregation has
received considerable attention. However, most existing
solutions rely on a trusted authority (TA) to distribute
parameters, which is not always possible in real-world
scenarios. Additionally, given the frequent changes in a
user’s membership, the system’s efficiency should be in-
creased. This paper proposes a data aggregation scheme
for SMs that do not have a TA. Under these circum-
stances, this paper’s solution can perform arbitrary ci-
phertext aggregation operations in response to the needs
of data users while also supporting dynamic user man-
agement. The security analysis and simulation results
demonstrate that this scheme can achieve the required se-
curity features while significantly reducing computational
costs and communication overhead, making it more suit-
able for the next-generation smart grid.

Keywords: Arbitrary Aggregate Function; Data Aggre-
gation; Dynamic User Management; Privacy-Preserving;
Smart Grid

1 Introduction

A smart grid is a next-generation grid made up of existing
power and communication systems. The power company
can dynamically obtain the total power consumption and
adjust the electricity price via command control and ser-
vice query between the control center (CC) and users.
Furthermore, it can provide additional power or recover
energy based on user demand.

SM is a critical component of the smart grid that is in-
stalled on the user side. The CC receives real-time power
consumption data from users via SMs. However, users

of the smart grid cannot completely trust the cloud, and
malicious users may obtain grid services illegally and even
cause damage to the grid. Without adequate protection,
grid services may be jeopardized, posing additional chal-
lenges: Individual privacy may be compromised as a re-
sult of real-time consumption data, from which an adver-
sary can easily infer a user’s life habits; (b) the comput-
ing power of SMs is limited, making some complex cryp-
tographic operations impractical; and (c) dynamic user
management becomes extremely complicated as a result
of user membership changes or other unpredictable rea-
sons [1]. As a result, a dependable, efficient, and secure
mechanism for preserving privacy is critical for the smart
grid.

Data aggregation has been used to protect users’ pri-
vacy in a number of studies [3–21]. Aggregation of data is
a frequent operation in IoT systems. Its primary objective
is to efficiently aggregate and collect data with the goal of
optimizing energy consumption, network life, traffic con-
gestion, and data accuracy. The published data in the
aggregation area has the same statistical characteristics
as the original data. As a result, when we transmit the
sum of the data, the individual data point is also masked.
By utilizing a homomorphic encryption model, you can
safeguard your privacy against the influence of data pro-
cessors. Thus, the SM sends encrypted data to the local
gateway, which aggregates it and uploads the aggregated
encrypted data to the CC. Only CC has the ability to de-
crypt aggregated user data [2]. Lu et al. [3] and Abdallah
et al. [5] aggregated users’ power data using homomorphic
encryption. However, the use of a public cryptographic
system introduces significant computational overhead. To
increase the efficiency of the system, a scheme [9,10] was
proposed to conceal the power data by masking the value.
Typically, a TA generates and distributes the mask value.
In [14,15], a data aggregation scheme was used in the vir-
tual aggregation area, but it was limited to performing



International Journal of Network Security(VDOI: 1816-3548-2021-00027) 2

the aggregation function’s operations.
This paper proposes a data aggregation scheme with-

out a TA in the smart grid. The scheme is divided into
four sections, with a collection of unique sequence num-
bers at its heart. This set enables the collection of data
from all participants in order to perform any aggregation
operations in the subsequent stage. At the same time, it
ensures efficiency and computational security for a variety
of thresholds. Our protocol makes the following contribu-
tions:

1) We safeguard users’ privacy by assigning them unique
numbers without the use of a TA, which is more scal-
able in practical applications.

2) According to the requirements, our proposed scheme
enables arbitrary aggregation operations on cipher-
texts.

3) To facilitate the management of dynamic users,
we incorporate a threshold variable secret sharing
scheme that is resistant to malicious user withdrawal
and fault-tolerant.

The remainder of this paper is structured as follows.
Section 2 discusses related work. Section 3 provides the
system’s model and threats. Then, in Section 4, we intro-
duce some cryptographic preliminaries. Following that,
Section 5 proposes our aggregation scheme, followed by
its flexible user management. We demonstrate security
analysis and efficiency evaluation in Section 6. Finally,
Section 7 concludes this paper.

2 Related Work

In recent years, researchers have proposed various solu-
tions to address the unique requirements of various ap-
plication scenarios. To achieve secure data aggregation,
some existing schemes employ homomorphic cryptosys-
tems, while others employ one-time masked values, one-
time padding, secure multi-party computation-based se-
cret sharing, and various other techniques.

Since homomorphic encryption technology ensures that
certain algebraic operations on plaintext can be per-
formed directly on ciphertext, numerous aggregation
schemes have been proposed using homomorphic encryp-
tion [10,13]. The authenticity of the message can be veri-
fied, and data aggregation can be accomplished with min-
imal communication and computational complexity us-
ing Lattice [1]. Users’ consumption reports are aggre-
gated at the gateway in Elgamal’s study [15] to mini-
mize communication overhead while effectively support-
ing fault tolerance for faulty smart meters. While the
public key-based homomorphic encryption scheme is ef-
fective at protecting users’ privacy, it imposes a significant
communication burden on smart meters. Secure data ag-
gregation is accomplished in schemes [3] and [18] using
a symmetric cryptosystem and differential privacy. They
also contribute to fault tolerance, but add to the cost

as the number of faulty smart meters grows. Bao and
Lu [3] proposed a lightweight data aggregation scheme
that incorporates FT support and supports privacy, in-
tegrity, and differential privacy. Additionally, their solu-
tion works with any number of faulty smart meters. Shi
et al. [18] employ a pairwise private stream data aggre-
gation method that is both private and FT compatible.
This scheme, however, is incapable of detecting a large
number of faulty smart meters. Badra et al. [2] proposed
a privacy-preserving data aggregation scheme that is both
efficient and lightweight. However, in practice, it is dif-
ficult to perform full-trust authorization when a third-
party agency distributes system parameters and transmits
decryption keys [16].

Fog-enabled aggregation schemes have been investi-
gated as a result of advancements in fog-based architec-
tures for smart grids. Lu et al. [12] aggregates hybrid
perception data in a fog computing environment using ho-
momorphic Paillier encryption and the Chinese remainder
theorem, and uses one-way hash chains to filter out fake
data from unauthenticated devices early. These aggre-
gate gation protocols, on the other hand, are limited to
one or two simple statistical calculations, which are insuf-
ficient for performing various statistical analyses. Lyu et
al. [14] proposed a fog-enabled data aggregation (PPFA)
scheme in which nodes aggregate data from various smart
grids on a periodic basis, and the cloud or provider ag-
gregates the data from all fog nodes. To prevent data
privacy leaks, the authors distribute noise among the par-
ties using a Gaussian distribution. Wang et al. [21] pro-
posed a secure aggregation scheme in a fog-based smart
grid architecture based on anonymization. In this scheme,
fog nodes aggregate data from sensor devices and forward
these data to the cloud for long-term storage. However,
this scheme aggregates data via a single fog device, which
may be vulnerable to denial-of-service attacks and sin-
gle point of failure. Additionally, this scheme’s adversary
model is limited, considering only possible insider attacks.
Moreover, no additional fog nodes are integrated into the
network in the event of a fog device failure to restore ag-
gregated data.

As more smart meters gain Internet connectivity, ag-
gregation areas overcome the limitations of traditional
physical areas. Liu et al. [11] introduced the concept of
a virtual aggregation area and proposes 3PDA, a practi-
cal privacy-preserving data aggregation scheme that does
not require a third-party trusted authority. Among them,
users who have a certain level of trust create a virtual ag-
gregation area to conceal a single user’s data. The disad-
vantage of their scheme is that certificate management
is inefficient. Both [9] and [6] attempted to solve the
user dynamic management problem through the use of
homomorphic hashing and ID-based signatures, but nei-
ther was sufficiently secure. To preserve privacy, [5] dis-
tributed masks among users using a semi-honest model,
but this scheme is relatively inefficient. Song et al. [20]
proposed a scheme for managing dynamic users called
dynamic membership data aggregation (DMDA). Xue et
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al. [23] employed a super-increment sequence to encrypt
multiple secrets into a single one with forward secrecy.
Shen et al. [17] proposed a data aggregation scheme ca-
pable of producing accurate results in the face of ma-
licious data mining attacks. Zuo et al. [24] proposed
a privacy-preserving multi-dimensional data aggregation
scheme for use in smart grids that does not rely on a
third-party trusted authority. None of these, however, ac-
count for the possibility of malicious users systematically
eavesdropping or destroying information. Xu et al. [22]
managed user joining and leaving using a (t, n) threshold
in secret sharing algorithm. When the initial threshold
does not provide an adequate level of security, users must
re-initialize and allocate secret shares, which is not only
time consuming but may be impossible due to a lack of
trusted communication channels.

In response to the above problems, this paper com-
bined an improved secret sharing algorithm to propose a
computationally secure solution without maintaining on-
line dealers. The program has a small share size and a
lower recovery complexity. Meanwhile, this paper opti-
mized the encryption algorithm to further reduce compu-
tational complexity and enhance system efficiency.

3 System Model

3.1 Communication Model

The system model is designed according to [5, 8]. There
are only two entity types involved: an untrusted aggre-
gator center (AC) and n SMs {SMi}ni=1, depicted in Fig-
ure 1.

SMs. SMs collect real-time usage dataDi, generate keys,
and upload ciphertexts to the aggregator. All SMs in
the system negotiate to generate shared keys. Gen-
erally, they are not assumed to be trusted; however,
some of them with some trust relationships can co-
operate when keys must be reconstructed. They can
communicate with the aggregator through an unse-
cure bi-directional communication channel.

AC. AC is primarily responsible for initializing system
parameters, as well as calculating and publishing ag-
gregate function results. AC is typically assumed to
be honest-but-curious, which means that it follows
the protocol and does not tamper with the results of
computations. However, it may collude with mali-
cious participants in order to deduce some useful in-
formation. We assume that the aggregator conspires
with no more than n− 2 participants.

3.2 Design Goals

This paper presents a novel protocol that can compute
arbitrary aggregation functions without requiring a TA,
while supporting dynamic user management, reducing

computing costs, and improving security level. Referring
to [17–21], the design goals involve the following aspects:

Privacy: Forbidding sensitive user information disclo-
sure and achieving (n− k)-source anonymity.

Eciency: Realizing low communication cost to be im-
plemented to smart meters with limited computing
power.

Scalability: Allowing a user to dynamically join in or
quit from a smart grid system, while flexibly dealing
with various thresholds.

4 Preliminaries

This section briefly introduces the homomorphic encryp-
tion, the Diffie-Hellman (DH) algorithm, and a TCSS
scheme according to the Chinese Remainder Theorem
(CRT).

4.1 Homomorphic Encryption

Homomorphic encryption provides a function for en-
crypted data processing. In this way, other people can
process encrypted data, but original content will still not
be revealed. Simultaneously, after the owner decrypts
processed data, the result becomes exactly the processed
result.

Let Enc() denote an encryption scheme, and K and
d be its key and plaintext, respectively. F represents an
operation. If for any instance Enc() of the encryption
scheme and operation F , there exists an efficient algo-
rithm Y such that:

Enc(K,F (d1, ..., dn)) = Y (K,F, (E(d1), ..., E(dn))) (1)

We denote the encryption algorithm Enc() as homomor-
phic for operation F .

If F (d1, ..., dn) =
∑n

i=1 di, then the encryption
scheme is an additively homomorphic encryption. If
F (d1, ..., dn) =

∏n
i=1 di, then the encryption scheme is an

multiplicatively homomorphic encryption. If Equation (1)
holds for F (d1, ..., dn) containing a mixed operation of ad-
dition and multiplication, then the encryption scheme is
fully homomorphic [19].

4.2 Diffie-Hellman Algorithm

The DH algorithm [4] is one of the earliest key exchange
algorithms. It enables both communicating parties to ex-
change keys securely in an insecure channel and encrypt
subsequent communication messages.

In our protocol, we apply the DH algorithm key ex-
change algorithm to establish the shared keys. Let G
denote a cyclic group with the prime order q, g be a gen-
erator of the group G and H be a hash function. The user
utilizes the system parameters (G, g, q,H) to generate its
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Figure 1: System model

public-private key pair (a, ga), where a is the private key
and ga is the public key. This primitive is given as:

Agree(ai, g
aj ) = Si,j (2)

where Si,j = H((gaj )
ai).

4.3 The CRT-based (t → t′, n) TCSS
Scheme

In the CRT based TCSS scheme [7], threshold can be
changed in an integer interval [t, t′] without updating the
shares. A distinct threshold can be activated at any time
through the public broadcast channel. The core of the
scheme is to construct a novel matrix of primes P that
utilizes a proposed sequence of nested closed intervals gen-
erated by large co-prime numbers. The dealer selects m
sequences of pairwise co-prime integers that are arranged
into the matrix form with the following order

p1,1 < p2,1 < ... < pn,1

p1,2 < p2,2 < ... < pn,2

...

pn,2 < pn,2 < ... < pn,n

(3)

where m = t′ − t+ 1. These integers need to satisfy

tl∏
i=1

m∏
j=l

pi,j > p0

tl−1∏
i=1

m∏
j=l

pn−i+1,j (4)

l = 1, 2, . . . ,m.
We use the CRT based TCSS scheme to divide each

user’s private key into n parts. When required to regen-
erate the private key, the number of cooperating partic-
ipants must reach tl. The algorithm can be summarized

as follows:

Share(K, t → t′, n) = {Ki, i}i∈[1,n] (5)

Recon({Ki, i}i∈[1,n], tl) = K (6)

5 Proposed Aggregation Scheme

Our scheme will be described in three stages in this sec-
tion: (a) initializing system parameters; (b) generating
unique sequence numbers; and (c) performing aggrega-
tion operations. Then, we detail our scheme as follows.
Table 1 summarizes the notations used in the paper.

Table 1: Frequently Used Notations

n The number of SMs
m The number of thresholds
k The number of malicious SMs
M The set {1, 2, ..., k}
SMi The i-th SM
fe A pseudo-random function indexed by e from f
Zi The random number selected by SMi

yi The sample value of SMi

Seq(i) The unique sequence number of SMi

T The set of n SMs’ sample values
Di The input data where the SMi generates
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5.1 The Initialization Phase

First, the AC initializes the system by generating the as-
sociated parameters for each participants and establishing
flexible aggregation thresholds based on various circum-
stances, such as the likelihood of the SMs malfunctioning.
The AC then uses the prime sequence generation algo-
rithm in [7] to select n×m pairwise co-prime integers as
(3) satisfying condition (4). Following completion of the
preceding steps, the AC transmits the system parameters
(q,G, g, n, t → t′, P, and a constant α) to all SMs.

When participant SMi receives the system parameter,
it generates two pairs of secret keys < Cpk

i , Csk
i > and

< Spk
i , Ssk

i >. Applying the techniques shown in [4], SMs

exchange their public keys (Cpk
i , Spk

i ) with each other to
obtain their own shared key sets {Si,j}j∈[1,n],j ̸=i via the
AC, where

{Si,j}j∈[1,n],j ̸=i = {Agree(Ssk
i , Spk

j )}j∈[1,n],j ̸=i (7)

We adopt the deterministic function f mentioned
in [22], assuming there are k(k ≤ n−2) SMs that may col-
lude with the AC. We let M = {1, 2, ..., k}. SMi chooses
a random number Zi, and compute the following:

zi = Zi + α× p0 (8)

sski = Ssk
i + α× p0 (9)

After that, SMi utilizes P to compute the shares sep-
arately on zi and sski for various thresholds. The

shares of SMi for the threshold tl are {z(l)i,w}w∈[1,n]

and {ssk,(l)i,w }w∈[1,n]. Then SMi encrypts its information

(i, w, z
(l)
i,w, s

sk,(l)
i,w ) to obtain the ciphertext {ei,w}w∈[1,n]

and uploads it to the AC. Upon receiving all the cipher-
texts {ei,w}w∈[1,n]i ∈ [1, n] at the AC, it will share them
with other SMs. During this period, SMi uses Zi along
with {Si,j}j∈[1,n],j ̸=i to construct pseudo-random func-
tions PFi,w(x) and PFi(x) as follows:

PFi,w(x) =

{
fi,w(x) mod M i < w

−fi,w(x) mod M i > w
(10)

PFi(x) = fZi(x) mod M (11)

where x represents the nonce information.

5.2 Unique Sequence Numbers Genera-
tion Phase

The proposed scheme considers the random sampling
method and quicksort to establish a unique sequence num-
ber for each SM. The details are as follows:

1) SMi randomly selects an integer sample value yi from
an interval [1, nα+2], where yi ̸= yj for ∀i ̸= j(i, j ∈
[1, n]), and uploads it to the AC;

2) Once the AC obtains all sample values {yi}i∈[1,n], it
applies quicksort to from small to large and obtains
the sorted set T ;

3) SMi gets its own unique sequence number Seq(i)
based on the rank of its sample value in T .

5.3 Executing the Aggregation Opera-
tion Phase

In the reconstruction phase, the AC broadcasts the re-
quired threshold tl(l ∈ [1,m]) and transmits a list of on-
line SMs to each SMi. Then the online SMi presents its

partial share z
(l)
i,w to reconstruct zw based on the CRT.

Each SM has an input data Di ∈ [1, n]d. According
to Seq(i), SMi generates an n-dimensional vector Vi =
(v1i , . . . , v

h
i , . . . , v

n
i ), where

vhi =


Di + Pi(h) +

∑
w∈[1,n]\i Pi,w(h) mod M

h = Seq(i)

0 + Pi(h) +
∑

w∈[1,n]\i Pi,w(h) mod M

h ̸= Seq(i), h ∈ [n]

(12)

Afterward, SMi sends Vi to the AC. Once the AC
obtains {Vi}i∈[n], it performs the corresponding addi-
tion operation for each item in {Vi}i∈[n] to calculate
Vagg = (V 1

agg, . . . , V
j
agg, . . . , V

n
agg) as follows:

V j
agg =

n∑
i=1

vji mod M, j ∈ [n] (13)

where Vagg consists of all SMs’ information. Thus far, the
AC can compute arbitrary aggregation functions using the
vector Vagg.

5.4 Dynamic User Management

Our scheme has designed a dynamic user management
mechanism with a detailed process demonstrated as fol-
lows.

1) SM Enrollment: We assume that a new SM (de-
noted as SMr) is added to the system, which is sim-
ilar to the steps in the initialization steps. First,
SMr generates two pairs of keys and sends the pub-
lic keys (Cpk

r , Spk
r ) to the AC. Then SMr negotiates

the shared key set {Sr,j}j∈[1,n′],j ̸=r and selects a ran-
dom number Zr. Since SMi has received additional
shared key from the new SM, SMi updates its se-
cret shared key set {Si,j}j∈[1,n′],j ̸=i, where Si,r is the
shared key that the new SM generates and shares
with it. Afterward, {SMi}i∈[1,n′] shares the static

secret (zi, s
sk
i ) to the AC using the CRT-based TCSS

scheme and continues to perform the same operations
as previously described.

2) SM Revocation: When a user SMr is revoked from
the system, it cannot upload its secret keys to the
AC any more. Hence, AC should transmit a revo-
cation message to the existing SMs. Consequently,

SMi sends its encrypted shares {z(l)i,w}w∈[1,n′] and

{ssk,(l)i,w }w∈[1,n′] to the AC. AC can broadcast the
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Table 2: Communication Overhead

Scheme CE-PPDA [5] ICN-PPDA [22] Our scheme
Initialization O(n2 + 2n) O(3n2 + 2n) O((2m+ 1)n2 + 2n)
Sequence Number Generation O(n2 + n) O(n2 + n) O(n)
Aggregation O(n2) O(n2) O(n2)

Table 3: The computation cost comparison

Scheme CE-PPDA [5] ICN-PPDA [22] Our scheme

Sequence Number Generation O(n2(log n)4/3) O(2n3) O(n log n)

Dynamic Joining Scheme O((n+ r)2(log(n+ r))4/3) O(2(n+ r)3) O((n+ r) log(n+ r))

Recovery Complexity None O(tl log
2 t) O(tl)

required threshold based on the situation to recon-
struct the random number. Then SMi continues to
compute corresponding vector Vi and the AC will ob-
tain the eventua aggregation result.

6 Performance Evaluation

In this section, we evaluate the performance of the pro-
posed scheme in terms of security and complexity.

6.1 Security Analysis

The scheme attains privacy preservation and (n − k)
source anonymity under the proposed threat model dis-
cussed in Section 3.

We have assumed that there are k (k ≤ n −
2) SMs that may collude with AC. Let f0 =
{f1({D1, . . . , Dn}), ..., fk({D1, . . . , Dn}), fAC({D1,
. . . , Dn})}, where fi({D1, . . . , Dn})(i = 1, ..., k) and
fAC({D1, . . . , Dn}) denote the outputs of SMi and AC,
respectively. If a polynomial time simulator S on the in-
put {Di}i∈[1,k] exists, then any probabilistic polynomial
time protocol π calculates the function f privately, such
that

S({SMi}i∈[1,k]∪AC, {Di}i∈[1,k], f0}}C≡viewπ
0 ({Di}i∈[1,n])

where C
≡ denotes the computational indistinguishability.

All SMs in the system will upload their information to
the AC, which then deduces information of any honest
user, implying that {viewπ

i (·) : i ∈ [1, k]} ⊆ viewπ
AC(·),

where viewπ
i is the view of SMi that executes the protocol

π on the input.
The proof and lemma details are similar to those in [5]

and [22], hence we need not discuss them here.

6.2 Efficiency Evaluation

In terms of storage cost, communication overhead, and
computation cost, the proposed scheme is compared to
other schemes with and without TA. This evaluation was

conducted using a laptop equipped with an Intel Core i5-
7267U processor running at 3.10GHz and 8 GB of RAM.
Let m be the total number of changeable thresholds, n
be the number of users of the initial system and r be the
number of added users.

We compare our scheme’s storage cost in the initializa-
tion phase to that of CE-PPDA [5] and ICN-PPDA [22].
All three schemes generate the user’s shared key set us-
ing the DH algorithm. The DH algorithm generates keys
with a length of between 512 and 1024, which must be
a multiple of 64, with 1024 being the default. Therefore,
the storage cost of each user’s shared key set defaults
to 1024(n − 1) bits in ICN-PPDA [22] and our scheme,
which is half of that in CE-PPDA [5]. This is because
CE-PPDA [5] requires each user to generate two shared
key sets.

The communication overhead of the aggregation phase
is identical in CE-PPDA [5] and ICN-PPDA [22]. The
first section contains costs associated with transmitting
parameters O(n), secret keys O(n2 + n), shares O(mn2)
and uploading ciphertexts O(mn2). The sharing thresh-
old changes when the security environment’s temporal dy-
namics are considered. As a result, our scheme has a
higher computational overhead than the other two. We
have enhanced the algorithm for generating unique se-
quence numbers in this article by increasing the number of
variable thresholds. We save money by avoiding the trans-
mission of n-dimensional vectors representing the number
of sample values within the subinterval and cost O(n2).
If r SMs join the system, there will be O(rn2) commu-
nication overhead reduced. Table 2 compares the actual
communication overhead required for each stage.

We compare the computation cost of our scheme with
CE-PPDA [5] and ICN-PPDA [22] in terms of unique
sequence numbers generation phase and aggregation op-
eration phase, depicted in Table 3. In CE-PPDA [5],
the number of subintervals is O(n2(log n)4/3) with a high
probability, as proven by the author. To generate the
sequence number for each participant in ICN-PPDA [22],
participants generate the ciphertext of n-dimensional vec-
tors, which has a computation cost of O(n3). Follow-
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ing that, the aggregator executes algorithms to obtain
the unique sequence number set, which in the worst-case
scenario costs O(n3). Due to the dynamic nature of
some participants joining and leaving the system, there
is some additional overhead. Because the operations used
to generate specific sequence numbers remain constant,
the computational overhead is (n + r)log(n + r). When
some users log out of the system, the operation becomes
almost the same as the basic scheme. Meanwhile, for dif-
ferent thresholds in the interval [t, t′], the (t, n) SS scheme
must be used m times repeatedly to recover the random
number Zi. In comparison, our scheme has a smaller share
size and a negligible loss of secret entropy when an insuffi-
cient number of participants attempt to tamper with the
system in order to reveal the secret. The corresponding
computation cost in this paper is simply the addition of
the quick sort and recovery complexity.

Following that, we run simulation experiments to de-
termine the computational costs of three different schemes
and validate the final results. We increased the number
of SMs (n) in the experiment in an even manner from two
to twenty. Due to the requirement to allow users to dy-
namically exit and rejoin the system, ICN-PPDA [22] has
a higher computation overhead than CE-PPDA [5]. Fig-
ure 2 illustrates the experimental results. As shown in the
figure, our solution has a much lower computation over-
head than the other two schemes in the second stage. Our
scheme has demonstrated a high level of efficiency. This
is more conducive to meeting the scenario requirements
of SMs in real-world situations.

Figure 2: Computation Cost about Generating Sequence
Number

7 Conclusion

We propose an efficient, privacy-preserving, and robust
data aggregation scheme for the smart grid in this paper.
There is no requirement for a trusted authority in our
scheme, and computing arbitrary aggregation functions
can be accomplished by generating unique numbers for
SMs. At the same time, it supports dynamic user manage-
ment and enhances security through the use of the TCSS
algorithm. Our performance analysis demonstrates that
our scheme significantly reduces communication overhead
and computation costs, which meets the design objectives
well.
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