
International Journal of Network Security(VDOI: 1816-3548-2021-00032) 1

AMC: A PoS Blockchain Consensus Protocol for
Scalable Nodes

Mengnan Wang1, Yahui Jiang1, Jianhua Huang1, and Ruicong Tang2

(Corresponding author: Jianhua Huang)

School of information science and engineering, East China University of Science and Technology1

130, Meilong Road, Xuhui District, Shanghai 200237, China

Email: jhhuang@ecust.edu.cn

Hong Kong DAEX Blockchain Limited2

Hong Kong 999077, China

(Received May 20, 2021; Revised and Accepted June 9, 2022; First Online July 3, 2022)

Abstract

In the public blockchain environment, most of the ex-
isting algorithms implement sharding through PoW. The
difficulty-based sharding calculation brings energy con-
sumption problems and seriously affects the randomness
and performance of sharding. This paper proposed AMC
(Agreement based on Multi-party Computation), a scal-
able PoS blockchain consensus protocol. AMC uses se-
cure multi-party computing (MPC) to achieve sharding
instead of consuming computing power. The MPC al-
gorithm πrandom is used to generate a recognized ran-
dom number, which ensures the randomness of sharding.
πrandom includes verifying aggregate values, which can
reduce the verification complexity to O(1) when all the
verified parties are honest. In addition, an improved Ten-
dermint algorithm is used to reach consensus in shards,
and the follow-the-satoshi algorithm is used to make the
leader election more random and secure. AMC introduced
a deposit mechanism to deal with Sybil Attacks and es-
tablished a forked accountability system to constrain the
nodes’ malicious behavior, thus protecting the system’s
security.

Keywords: Blockchain; Consensus Protocol; Secure Mul-
tiparty Computation; Sharding

1 Introduction

The blockchain is essentially a distributed database, but
what is different from traditional distributed databases is
that there are many nodes in the public blockchain and
their identities are unknown [1]. In this case, the tra-
ditional consensus algorithms cannot be applied to the
blockchain. In addition, the throughput, scalability and
security of the consensus protocols have also become the
bottleneck of the development of the public blockchain.
The consensus algorithm of Bitcoin [21] is Proof of Work

(PoW) which is simple and has good scalability. As the
number of nodes increases, the PoW-based system will
become more secure. However, the problems of PoW are
low throughput and high energy consumption. From a
long-term perspective, with the upgrade of technology,
the constant concentration of computing power will in-
evitably bring security risks. PoW was originally pro-
posed to resist Sybil attacks. Proof of Stake (PoS) [12]
can completely replace PoW to achieve this function with-
out generating any energy consumption. In addition, the
classic combination of PoS and Practical Byzantine Fault
Tolerance (PBFT) has the advantage of high through-
put and high security. However, due to PBFT’s own
requirements for node identities and restrictions on the
number of nodes, this combination is not scalable. Fortu-
nately, the application of sharding technology breaks the
deadlock. The sharding is to group nodes into different
shards which can generate blocks in parallel. The more
nodes and the more shards, the greater the throughput.
Sharding undoubtedly has significant effects in improving
the throughput and scalability of the blockchain. Cur-
rently, Ethereum, ELASTICO [18], and Zilliqa chain [27]
are all doing sharding attempts. The latter two use PoW
for sharding. Although this method is simple and con-
venient, there are two problems. First, if the difficulty
of sharding calculation is low, this will allow nodes to
perform multiple calculations in order to enter the shard
that is beneficial to them, and may cause malicious nodes
to gather in the same shard [23]. Second, if the diffi-
culty of sharding is high, it will not only bring about the
problem of energy consumption, but also affect the effi-
ciency of consensus. In addition to the mainstream PoW
method, OmniLedger [13] generates an unbiased random
number through the RandHound [24] scheme, but requires
VRF [9] to select a leader. Although the VRF algorithm
can guarantee the randomness of leader selection, it can-
not guarantee that the leader’s behavior must be correct.

In this paper, we propose AMC (Agreement based on

International Journal of Network Security(VDOI: 1816-3548-2021-00032) 2

Multi-party Computation), a scalable consensus protocol
which achieves scalability and high throughput through
sharding. Unlike the PoW-based sharding method, AMC
implements random sharding of nodes based on the rec-
ognized random number generated by MPC and the de-
posit paid by nodes, which completely removes the depen-
dence on computing power, reduces energy consumption
and improves the efficiency and security of sharding. The
stakeholders in the AMC shards use an improved Ten-
dermint protocol to achieve strong consistency. At the
same time, a deposit mechanism is introduced to ensure
that each node entering the verification set has to pay
the capital cost to deal with Sybil attacks, and a forked
accountability system is established according to the mar-
gin to constrain the node behavior to protect the system
security.

2 Related Work

Consensus protocols are the key to achieve the decentral-
ization and data consistency of blockchains, and have a
great impact on the performance, scalability and security
of blockchains. Therefore, the research on the consensus
protocols has been receiving wide attention. The earli-
est proposed blockchain consensus protocol is Nakamoto’s
Bitcoin algorithm, but for security, Bitcoin mining time
is an average of 10 minutes, a transaction needs to wait
for at least 6 confirmation blocks to be successful in the
chain. The throughput is quite low. In 2015, Loi Luu
et al. proposed a computationally extensible blockchain
Byzantine Consensus Protocol (SCP) [17], using the idea
of sharding to make the throughput and network com-
puting power approximately linear. The core design idea
of SCP is to use PoW to randomly divide the network
into shards which generate blocks in parallel. In 2016,
Bitcoin-NG [7] divides time into epochs and introduces
key blocks for leader election and microblocks that con-
tain the ledger entries. The above-mentioned improved
algorithms all improve the throughput to a certain extent,
but the defects of the PoW mechanism cannot be avoided.
The cost of mining in PoW is very high, but the system’s
mining rewards are regularly reduced. When miners are
unprofitable, they no longer maintain the consistency of
the blockchain. This is the typical tragedy of the com-
mons [19]. In this context, nodes with strong computing
power are motivated to implement 51% attacks.

In order to avoid the problems of PoW, PPCoin [12]
introduced an energy-efficient consensus protocol PoS
(Proof of Stake). PoS is based on coin age rather than
computing power to provide most of the network secu-
rity, but malicious nodes would abuse the coin age to im-
plement the double-spending attack. The introduction of
PoS alleviated the problem of centralization of computing
power, but brought about the problem of centralization
of rights. Apart from doing evil actively, nodes with high
stake may accept bribes from malicious nodes to create
forks. Proof of Activity (PoA) proposed by Iddo Ben-

tov [3] in 2014 greatly increased the cost of bribery at-
tacks. PoA contains a core sub-algorithm called follow-
the-satoshi. The sub-algorithm selects N stakeholders
based on the empty block generated by the miners’ com-
puting power. The probability of a node being selected is
proportional to the stake it holds. The former N-1 stake-
holders are responsible for signing the empty block, and
the last stakeholder is responsible for packaging transac-
tions into the empty block and broadcasting the block.
In PoA, attackers need to bribe both the miner and N
stakeholders to generate the blocks they want, so the at-
tack cost is very high. However, natural forks are still
inevitable in PoA.

In order to avoid the natural fork, Jae Kwon [14] pro-
posed the Tendermint algorithm in which the leader elec-
tion is based on the deterministic round-robin algorithm
and the consensus PBFT. Since Tendermint completely
removes the requirement of computing power, the selected
stakeholders can vote on multiple blocks at the same
height without cost to cause the blockchain to fork, which
causesthe “nothing at stake” problem. In order to solve
this problem, Tendermint introduced a deposit mecha-
nism. Nodes that abuse voting rights will be penalized
for slashing deposit. Later, Vitalik Buterin et al. [4] pro-
posed the Casper algorithm which uses the deposit mech-
anism in Tendermint. The original idea of this algorithm
is to be used as the overlay on the existing PoW chain,
and it sets checkpoints to resist long-range attacks. Due
to the use of voting mechanisms, both Tendermint and
Casper have node scalability issues. In 2016, Iddo Bentov
et al. [2] improved PoA and proposed Chains of Activity
(CoA). CoA completely removes the computation part,
and uses the information of the first k blocks as the input
of follow-the-satoshi to obtain the creators of the next k
blocks, it solves the natural fork problem in PoA, but the
protocol has a problem of nodes offline. In 2017, Agge-
los Kiayias et al. [11] proposed Ouroboros which is the
first provably secure PoS blockchain consensus protocol.
Ouroboros presents a formal PoS protocol implementa-
tion model that uses the MPC-based coin-tossing protocol
to generate a real random number as the input of follow-
the-satoshi to achieve a fair election for a leader. More-
over, the incentive mechanism of Ouroboros enables nodes
to behave honestly to reach a near-Nash equilibrium [15],
even if the attacking parties collude, the honest parties
can still benefit, effectively reducing block detention and
selfish mining. However, the protocol generates leaders of
multiple consecutive blocks at once, and subsequent lead-
ers are vulnerable to attacks. In 2018, Bernardo David et
al. [6] improved it and proposed Ouroboros Praos, intro-
ducing a verifiable random function (VRF) [20] to imple-
ment the secret election of block creators.

3 AMC Consensus Agreement

AMC is designed to scale transaction throughput of the
network and provide the network security. The main ap-

International Journal of Network Security(VDOI: 1816-3548-2021-00032) 3

proach to achieve the goal is sharding, i.e., dividing the
mining network into small consensus groups called shards,
which can process different transactions in parallel. AMC
uses secure multi-party computing (MPC) to implement
sharding instead of consuming computing power, thereby
improving the efficiency and security of sharding.

3.1 Settings and Assumptions of the Sys-
tem

There are two roles in AMC: users and stakeholders.
Users use the blockchain infrastructure to complete the
transfers or contract calls, while stakeholders run the
AMC protocol to participate in the block consensus and
are responsible for the security of the blockchain. To be-
come a stakeholder, a participant is required to pay more
than a certain amount of deposit to join the validator set
V aSet. The set includes each stakeholder’s public key ad-
dress, deposit amount and IP address. The deposit is used
as a proof of stake to prevent Sybil attacks and to punish
those who misbehave. If a block is successfully generated,
the honest stakeholders will be rewarded in proportion to
their deposit.

In the aspect of the attack model, the rational model
is closest to reality. Rational participants will choose
whether to attack the system according to their own ben-
efits. AMC rewards the honest participants, and the ma-
licious participants will be punished to guarantee that
the honest behavior of participants can achieve near-Nash
equilibrium. The protocol can tolerate attackers with less
than 1/3 weight of stake. For the network model, assum-
ing that the network communication channel is partially
synchronized, there is an unknown upper bound on the
information transmission in the network, and the imme-
diate delay is arbitrary but limited. At the same time,
it is assumed that the honest nodes can access the inter-
nal clock, which does not need to be exactly the same as
the global clock, but floats up and down within a certain
range of the global clock.

3.2 AMC Description

AMC divides time into epochs, and each epoch is further
divided into multiple time slots, where a slot is a small
period of time to generate blocks. A two-tuple (epochId,
slotId) containing an epoch ID and a slot ID is used to
mark a block.

AMC has a hierarchical blockchain architecture to scale
the throughput of the network, as shown in Figure 1.

The network is logically divided into three types of
shards: multiple block creation shards, an integration
shard and a MPC shard. The block creation shards are
the consensus groups which process transactions indepen-
dently to generate microblocks. The integration shard is
responsible for checking and merging the microblocks sub-
mitted by the block creation shards, and then broadcast-
ing the integrated blocks to the entire blockchain network.
The MPC shard is responsible for generating a random

Figure 1: Hierarchical blockchain architecture

number needed for the next epoch sharding. The mul-
tiparty coin-tossing protocol uses the random number to
assign participants to different shards. Each shard runs an
intra-partition consensus protocol to independently pro-
cess a group of transactions, pack the transactions into
microblocks, and send them to the integration shard for
generating final blocks.

The whole process is shown in Figure 2. At the be-
ginning of each epoch, a random number generated by
the multiparty coin-tossing protocol is used to assign the
stakeholders in the network to the shards to which they
belong. To ensure protocol initiation, the initial V aSet
and random will be hard-coded into the genesis block.

Figure 2: Operation process of AMC

According to the random number random generated
in the previous epoch, each stakeholder Pi ∈ V aSet,
calculates q = LSBs(hash(random||addresspi

)), where
addresspi

is the account address of Pi, and LSB(·) rep-
resents the rightmost s bits. The value of q is used as the
basis for dividing nodes into different shards. When q=0,
the node is divided into the MPC shard. When q=1, the
node is divided into the integration shard. When q=2,
the node is divided into the zeroth creation shard. When

International Journal of Network Security(VDOI: 1816-3548-2021-00032) 4

q=3, the node is divided into the first creation block and
so on. Anyone can verify the shard to which Pi belongs
through VaSet and q.

After being assigned to a shard, each stakeholder
hashes each address in V aSet with random to create a
membership stake table for all the shards. At the same
time, each stakeholder needs to establish connections with
other members in the member table of its own shard to
ensure that there is a connected graph in the network.

Then, the shards of three kinds will perform their du-
ties. The execution time of MPC shard is one epoch.
block creation shards’ work and integration shard’s work
are completed one after another in the same slot, and are
executed repeatedly in slot cycles until new shards are
re-established in the next epoch.

3.3 Multiparty Coin-Tossing Protocol
with Guaranteed Output Delivery

Sharding randomness is critical to the security of the
AMC protocol. The key is to choose a publicly verifi-
able unbiased random number. This paper proposes a
multiparty coin-tossing protocol πrandom with guaranteed
output delivery to generate a recognized random num-
ber. πrandom and the random number generation scheme
SCRAPE [5] are both based on Public Verifiable Secret
Sharing Scheme (PVSS). The difference is that πrandom

adds verification of the sum of the commitments, which
is to verify a set of aggregated values. If the verification
is successful, the secret reconstruction can be performed
directly. In this case, the complexity of the polynomial
verification is O(1). The complexity is O(N) only when
the verification fails, while the complexity of polynomial
verification in SCRAPE is always O(N).

3.3.1 Protocol Description

πrandom is based on Heidarvand’s PVSS scheme [10],
which ensures that no participant can dominate the gen-
eration of random numbers, and the protocol guarantees
the output when most participants are honest, that is,
whether malicious participants abort the protocol prema-
turely or deviate from the execution of the protocol, the
honest participants can get the correct output. Through-
out protocol execution, any external node can detect the
correctness of the protocol performers’ behavior. The de-
scription of πrandom is shown as follows.

Assume that Λ := (q,G,G1, e) represents a bilinear
mapping group, and g and h are two independently se-
lected generators of G. The interactors in the protocol are
h participants P1, · · · , Ph, and V represents any external
verifier who can access public information. The protocol
phases are as follows:

Setting: For all 1 ≤ i ≤ h, participant Pi generates a
private key ski, calculates the public key pki = hski

and publishes it.

Distribution: For all 1 ≤ i ≤ h, participant Pi selects
si as the distributor, calculates the secret Si = hsi

and randomly selects t − 1 parameters c1, · · · , ct−1,
and generates a polynomial pi(x) =

∑t−1
j=0 cijx

j , ci0 =
si. For all 1 ≤ j ≤ h, Pi calculates secret share
sij = pi(j), and uses Pj ’s public key to encrypt sij
to get ŝij = pkj

sij , and calculates the corresponding
commitments vij = gsij and vi0 = gsi . Pi announces
(ŝi1, · · · , ŝih, vi0, vi1, · · · , vih).

Disclosure: When all participants have completed the
secret distribution, note that the set A contains at
least t members who want to reconstruct the secret.
For all 1 ≤ i ≤ h, the participant Pj ∈ A pub-

lishes the decrypted share s̃ij = ŝ
skj

−1

ij = hsij to
the blockchain.

Verification: For all 1 ≤ j ≤ h, the sum of the shares
owned by Pj is

∑h
i=1 s̃ij , and its corresponding com-

mitment is vj =
∏h

i=1 vij , v0 =
∏h

i=1 vi0. For all
1 ≤ i ≤ h, 1 ≤ j ≤ h, V first checks if e(ŝij , g) =
e(pkj , vij) and e(pkj , s̃ij) = e(ŝij , h) are true, then V
randomly selects δ and selects t verified participants
to form set B. If set B does not exist, the protocol
is terminated; otherwise, V performs VSPS [8] ver-
ification on the commitment vm of the sum of the
shares, which means vδ

′ =
∏

Pm∈B (vm)∆m is calcu-

lated, where ∆m =
∑t−1

l=0 λlmδl and λlm is a con-
stant that can be calculated directly from B. V ver-
ifies whether v′δ and vδ are equal. If they are equal,
enter the reconstruction phase, otherwise enter the
re-verification phase.

Reconstruction: For all 1 ≤ i ≤ h, Pj ∈ A recovers
the value hsi by the formula based on interpolation
hsi =

∏
j∈B (s̃ij)

λj , λj =
∏

k ̸=j
k

k−j . The resulting

random number is random =
∏

1≤i≤h h
si , and the

protocol is terminated.

Re-verification: For all 1 ≤ i ≤ h, V performs VSPS
verification on the commitment vij published by Pi.
The method is the same as that in the verification
phase. If Pi’s commitment does not pass VSPS ver-
ification, then Pi is a malicious participant. Note
that the set B contains the verified commitments of
group t. If B exists, enter the reconstruction phase;
otherwise, the protocol is terminated.

In πrandom, any external node can verify the correct-
ness of the distribution, commitment, and disclosure of
the stakeholder’s secret shares. If it is found that a stake-
holder maliciously sends wrong message, a transaction can
be reported and the stakeholder will face the penalty of
deposit destruction.

3.3.2 Protocol Security Analysis

πrandom meets the following two security features:

International Journal of Network Security(VDOI: 1816-3548-2021-00032) 5

1) Correctness: If the members in B are honest, all the
information published by the members can be veri-
fied in the disclosure phase, and in the reconstruction
phase, all the members can recover the secret to get
the final random number.

2) Verifiability: For the secret si shared by participant
Pi in the πrandom verification phase, if the encrypted
share ŝij and the share commitment vij belonging
to the participant Pj pass the verification, there is a
high possibility that Pj has correctly announced the
information about the share. During the reconstruc-
tion phase of πrandom, if the decrypted value of the
encrypted share passes verification, it means that the
recovered si is indeed a secret shared by Pi.

The key sub-protocol of πrandom is a threshold secret
sharing scheme [25]. If there are at least t honest partici-
pants, the secret value can be calculated by interpolation,
so it can be intuitively seen that πrandom meets the cor-
rectness. The verifiability of πrandom is analyzed below.

Theorem 1. In the πrandom commitment phase, for all
1 ≤ j ≤ h, if the (vij , ŝij) published by the secret distribu-
tor Pi does not correspond, that is, logg(vij) = logpkj

(ŝij)
is not satisfied, any verifier can verify it.

Proof. After Pi distributes Si, any external verifier ver-
ifies whether e(ŝij , g) = e(pkij , vij) is true. For all 1 ≤
j ≤ h, if (vij , ŝij) announced by Pi satisfies logg(vij) =
logpkj

(ŝij), and e(ŝij , g) = e(pkj
sij , g) = e(pkj , g)

sij and
e(pkj , vij) = e(pkj , g

sij) = e(pkj , g)
sij , then e(ŝij , g) =

e(pkj , vij) holds. If the information published by Pi is
logg(vij) = a ̸= logpkj

(ŝij) = b, any verifier can easily cal-

culate e(ŝij , g) = e(pkj , g)
a ̸= e(pkj , vij) = e(pkj , g)

b.

Theorem 2. In the πrandom disclosure phase, if a mem-
ber Pj in A publishes the wrong decryption share s̃ij, any
verifier can detect it.

Proof. If s̃ij = ha ̸= hsij , a verifier can easily detect
e(pkj , s̃ij) = e(pkj , h

a) ̸= e(pkj , h
sij) = e(ŝij , h).

Theorem 3. If the (vij , ŝij) published by the secret dis-
tributor Pi is not related to the correct share, that is, there
is logg(vij) = logpkj

(ŝij) = s′ij but s′ij is not the correct
share of the secret si, then any verifier can detect it.

Proof. In the disclosure phase of πrandom, the verifier V
selects a qualified B and enters a fast verification phase.
For convenience of explanation, it is assumed that the
members in B are P1, P2, · · · , Pt. For all 1 ≤ j ≤ t,
1 ≤ i ≤ h,

∑h
i=1 sij is the point on

∑h
i=1 pi(x). Since

the commitment sij is calculated as vij = gsij and has

additive homomorphism, the commitment of
∑h

i=1 sij is

vj =
∏h

i=1 vij and commitment value of the secret sum is

v0 =
∏h

i=1 vi0. Note that
∑h

i=1 pi(x) = f(x) = a0+a1x+

a2x
2 + · · ·+ at−1x

t−1, there is:
1 0 · · · 0
1 1 · · · 1
...

...
...

...
1 t− 1 · · · (t− 1)t−1




a0
a1
...

at−1

 =


f (0)
f (1)
...

f (t− 1)


Note that:

M


a0
a1
...

at−1

 =


f (0)
f (1)
...

f (t− 1)


Then: 

a0
a1
...

at−1

 = M−1


f (0)
f (1)
...

f (t− 1)


Let λij be the value of the i -th row and j -th column

of M−1, then ai =
∑t−1

j=0 λijf(j).
The verifier V randomly selects δ ∈ [1, t], and calcu-

lates:

v′δ = gf(δ) = g
∑t−1

i=0 aiδ
i

= g
∑t−1

i=0

∑t−1
j=0 λijf(j)δ

i

=

t−1∏
j=0

(gf(j))∆j

=

t−1∏
j=0

(vj)
∆j

Among them ∆j =
∑t−1

i=0 λijδ
i.

If v′δ is equal to the known vδ, the members in B have
the correct data. The above process is called VSPS (Ver-
ifiable Secret and Polynomial Sharing) property verifica-
tion, which can verify whether the shares are on the same
polynomial. The above is the verification process of ag-
gregated values. Only the complexity of O(1) can verify
the correctness of the t member data. However, if the
verification fails, the specific error data cannot be deter-
mined. At this time, we need to go to the re-verification
phase. vij published by each participant Pi performs
VSPS verification. At this time, the participant sending
the wrong information can be detected, but the verifi-
cation complexity is O(N). In the end, any verifier can
detect whether logg(vij) is the correct share of secret si
according to VSPS verification.

Moreover, because the existing e(ŝij , g) = e(pkj , vij)
and e(pkj , s̃ij) = e(ŝij , h) are established, it can be con-
cluded that the published information is correct and the
same random number can be obtained.

3.4 Consensus in Shards

3.4.1 Leader Election

Members in the block creation shards and the integration
shard use an improved Tendermint algorithm for consen-
sus. When a leader is selected at the beginning of each

International Journal of Network Security(VDOI: 1816-3548-2021-00032) 6

slot, Tendermint uses a determined round-robin election
algorithm [22], while AMC uses the follow-the-satoshi al-
gorithm. Satoshi is the smallest unit of cryptocurrency.
Follow-the-satoshi was first proposed in Proof of Activity.
The goal of the algorithm is to make the probability of
each stakeholder being selected as the leader proportional
to his stake. By contrast, the result of the round-robin
election algorithm is that the frequency of a stakeholder
being selected as the leader is proportional to his stake.
So anyone can know the certain order of leaders before the
stake table is updated. In follow-the-satoshi, the leader
of each round is uncertain. It can only be said that the
greater the stake, the greater the possibility of being se-
lected. In this case, the security is higher, because if the
order of the leaders is known in advance, the attacker can
make targeted attacks on future leaders.

The AMC implementation of follow-the-satoshi is as
follows: The stakeholders arrange the member stake table
of the shard in the order of public key addresses, and take
the rightmost bits of the hash value of the integrated block
generated by the previous slot, and determine the leader
of the slot according to the stake interval in which it is
located. For example, the stake table arranged in the
order of public keys is (P1, 4), (P2, 2), (P3, 2), (P4, 2), and
the divided stake interval is shown in Figure 3. The total
stake is 10 satoshi, which need to be represented by 4
bits, then take the rightmost 4 bits of the hash value of
the previous integrated block. Assuming the value is 13,
calculate 13 mod 10 = 3, which belongs to the P1 interval,
then P1 is the leader of the slot.

Figure 3: Stake range

3.4.2 Consensus Process in Block Creation
Shards

In order to prevent a transaction from being repeat-
edly processed in different block creation shards, the
sender’s address is used to allocate the transaction, and
the block creation shard to which the transaction be-
longs will be determined according to the value of z =
LSBs (hash (addresspi

)) mod countblock shard.
The leader in a block creation shard will package trans-

actions to propose a microblock. Other stakeholders in
the shard participate in the consensus by voting on the
microblock. There are two types of voting specified in
vote, namely prevote and precommit. The voting object
is identified by the block hash. The choice field is 0 for
no. This option is valid only during the prevote phase.
1 means yes. Nil means timeout and no message is re-
ceived. Since it is assumed that the operation is in a
semi-synchronous network environment and the internal
clock of the nodes is not exactly the same as the global

clock, there are two possible timeouts: the first is that the
sender is a Byzantine node which will delay the message
transmission indefinitely; the second is since the upper
limit of network delay is unknown and the time limit set
by the receiver is too short. AMC stipulates that when
more than 2/3 of the voting weight is nil, the sender is
judged to be a Byzantine node and will be punished. Oth-
erwise, the sender is deemed to have sent the message, and
the receiver will appropriately extend its timeout period.

A microblock can be submitted to the upper-level in-
tegration shard only if it obtains more than 2/3 of the
votes in both the prevote and precommit phases. In the
consensus process, 2/3 of the votes do not refer to the
proportion of the number of stakeholders, but refer to the
proportion of the stake of the stakeholders. The more
deposits the stakeholders submit, the greater the voting
weight.

The entire consensus process is divided into the follow-
ing 4 phases:

Proposal phase. When a user sends a transaction
to the blockchain network, the stakeholders first
verify the validity of the transaction, such as
checking whether the transaction belongs to the
shard, whether the transaction has been tampered
with, whether the signature is correct, whether the
balance is sufficient, etc. After the verification is
passed, the transaction is put into the transaction
buffer pool. The leader packs transactions from his
own transaction buffer pool and proposes an initial
proposal microblock with the structure shown in
Figure 4(a), where blockhash = hash(epochnumber
|| slotnumber||partitionnumber|| timestamp ||
Transactionfees || TransactionMerkelroot).

Prevote phase. The stakeholder Pi verifies the mi-
croblock after receiving it within the prescribed time
limit. If the verification is passed, the choice field is
set to 1, otherwise the choice field is set to 0. If the
stakeholder does not receive the microblock proposed
by the leader after timeout, the choice field is set to
nil and the timeout period is extended. After that,
Pi will broadcast (Pi, vote) in the shard.

Precommit phase. The operation in this phase is di-
vided into 3 cases according to the voting results in
the prevote phase. (a) The stakeholder Pi receives
more than 2/3 of the yes votes within the time limit,
and sets the choice field to 1. (b) If Pi receives over
2/3 of the negative votes or nil votes within the time
limit, the choice field is set to nil. At this time,
it can be determined that the leader is a malicious
participant, and Pi can report the formed evidence
(microblock, leader’s public key, more than 2/3 of
negative votes or nil votes) to the entire network in
the form of a transaction. The reported transaction
will generally be processed in the next slot. (c) Af-
ter timeout, if Pi receives less than 2/3 of the three
types of votes, set the choice field to nil and extend

International Journal of Network Security(VDOI: 1816-3548-2021-00032) 7

Figure 4: Microblock structure

the timeout period, and then Pi broadcasts (Pi, vote)
in the shard.

Commit phase. If the leader receives more than 2/3 of
the precommit approval votes within the time limit,
the signatures of the supporters are added to the mi-
croblock, the signature Merkel root is added to the
block header, and the hash value of the microblock
remains unchanged. Finally, a submitted microblock
is formed as shown in Figure 4(b), and the leader
submits this microblock to the upper-level integra-
tion shard. If the leader receives less than 2/3 of the
precommit approval votes after the timeout, nil is
submitted to the integration shard.

Figure 5: Consensus process

The entire consensus process is shown in Figure 5. If
any malicious behavior in the consensus is found, the
stakeholders can report it to the entire network in the
form of transactions. For example, the leader proposes
multiple microblocks at the same time, the stakehold-
ers vote on multiple microblocks, the same stakeholders
vote in contradiction at the same phase, and overtime be-
havior occurs. If these reported transactions are verified
later, the fixed value is taken from the deposit of the ma-
licious node and distributed to the reporting node, and

the remaining deposit is destroyed. The purpose of not
distributing all the deposit to the reporting node is to
prevent nodes from colluding to frame high-stakes nodes.

3.4.3 Consensus in Integration Shard

The consensus process in the integration shard is roughly
the same as that in block creation shards. After the
leader is selected, the leader verifies the microblocks sub-
mitted by the block creation shards. After the verifica-
tion is passed, the microblocks are merged into the inte-
grated block shown in Figure 6. Similar to Ethereum,
AMC is based on the account/balance model. The
blockchain using the AMC algorithm can be regarded as
a transaction-based ”state machine”. When the leader
processes all transactions from microblocks, it calculates
the final states of all accounts. The storage structure of
these states uses the Merkle Patricia Trie (MPT) [26] in
Ethereum. The leader puts the MPT tree root of the
account states into the block header. After the leader
proposes the initial integration block, the consensus pro-
ceeds to the prevote, precommit, and commit phases in
sequence. The final block structure is shown in Figure 7.
The leader broadcasts the integrated block to the entire
blockchain network, and then the next slot starts.

As shown in Figure 5, unlike the block shards, the in-
tegration shard can perform multiple rounds of consensus
while the block shards can only perform one round of
consensus. This is because multiple block creation shards
operate in parallel and limiting the number of consensus
rounds to 1 allows each block shard to submit consensus
results within approximately the same time. In the in-
tegration shard, if the leader does not receive more than
2/3 of the precommit votes in the commit phase, in or-
der to ensure the activity, the leader will be re-elected for
consensus until the correct integration block is obtained.
The input of the follow-the-satoshi algorithm is the right-
most bits of the previous slot block hash and the round
number of this round of consensus.

Figure 6: Initial proposed integrated block structure

International Journal of Network Security(VDOI: 1816-3548-2021-00032) 8

Figure 7: Integrated block structure

3.5 Reduction Strategies and Deposit
Redemption Strategies

When a stakeholder needs to go offline temporarily, it
should send an offline request transaction, and the stake-
holder will be automatically ignored during the next
sharding or the next vote. If stakeholders go offline with-
out notifying the system, it may cause stake of the honest
parties to be less than 2/3. In order to avoid this sit-
uation, such stakeholders will be punished with deposit
reduction.

When a node wants to withdraw from the stake set
V aSet, it needs to send an exit application transaction
first. After the transaction is written into the blockchain,
the node is no longer in the list of stakeholders, but its
deposit will be refunded after a few months. This time is
called the ”thaw period”. The nodes of the entire network
need to synchronize the latest blockchain regularly and
the time interval is less than the ”thaw period”, which is
to prevent the nodes that exit the stake set from doing
evil. Nodes that have been offline for a long time or light
clients cannot immediately know the changes in the stake
set. If the exiting node forges a block to deceive, with the
deposit delay return measure, the node can be punished
by destroying the deposit.

4 Security Analysis

4.1 Guaranteed Output of the Multi-
party Coin-Tossing Protocol

The idea of generating random numbers by the multi-
party coin-tossing protocol is that multiple participants
each generate a pseudo-random number, and calculate
these pseudo-random numbers through multiparty inter-
action to obtain a true random number recognized by ev-
eryone. Figure 8(a) shows the simplest two-party coin-
tossing scheme. The process is as follows:

1) A generates a random string sA, uses the commit-

ment scheme to commit sA to obtain comkA
(sA), and

then sends comkA
(sA) to B.

2) After confirming that A has announced the commit-
ment, B saves it, and then generates a random string
sB and sends it to A.

3) After receiving sB , A reveals own commitment and
sends the revealed value to B.

4) B checks whether it matches the previous commit-
ment according to the plaintext of the random string.
If it matches, XOR sA and sB to obtain a true ran-
dom string recognized by both parties.

Figure 8: Coin-tossing Scheme without guaranteed out-
put delivery

The two-party protocol can be easily extended to mul-
tiple parties. It can be seen that A and B need to interact
at least 3 times in the above process. During the process,
if a participant stops the protocol halfway, as shown in
Figure 8(b), if A terminates the protocol after B sends
the random string sB , and does not reveal the commit-
ment, B as an honest party will not get the final output.

In AMC, in order to ensure the smooth sharding, the
adopted coin-tossing protocol can guarantee output under
the assumption that most nodes are honest. πrandom’s
idea of generating a true random number is roughly the
same as other coin-tossing protocols. Each participant
generates a random string, publishes the random string
after making a commitment to it, and finally multiplies
all the random strings to obtain an unbiased random
number. πrandom can guarantee output because it uses
a public verifiable threshold secret sharing scheme as its
sub-protocol. In πrandom, the secret to be shared by all
distributors is hs, which uses the Shamir secret sharing
scheme to divide the secret parameter s into (s1, · · · , sh),
commits these shares and publishes them after encrypting
them with the public keys of the corresponding partici-
pants. After this step, all the task of the participants as
distributors is completed. As long as more than t par-
ticipants are honest, the fragmented cipher text can be
correctly decrypted. The honest participants can obtain
enough correct pieces of plaintext, and then recover the
secret. Even if a few malicious participants terminate the
protocol early, the output of the honest parties will not
be affected. To ensure security, t is generally h/2.

International Journal of Network Security(VDOI: 1816-3548-2021-00032) 9

4.2 Sharding Randomness

Many sharding-based blockchains use the PoW algorithm
to implement sharding. The main idea is to calculate
a random number nonce that meets certain conditions
for a participant, and determine which shard the par-
ticipant belongs to according to the rightmost l bits
of nonce. Taking classic ELASTICO as an example,
the condition for calculating random numbers is O =
H(epochRandom||IP ||PK||nonce) ≤ D, where D is the
difficulty value, IP and PK are the participants’ IP ad-
dresses and public keys’ address, epochRandom is a ran-
dom number determined by the final committee in the
previous epoch. This solution is simple and clear, and
realizes anti-Sybil attack and node sharding at the same
time.However, if fast sharding is required, the computa-
tional difficulty must inevitably be reduced. Nodes with
stronger computing power can calculate multiple values,
and then choose the most beneficial shard based on these
values, which reduces the randomness of sharding. If the
computational difficulty is increased in order to ensure
security, the meaningless random number calculation will
waste a lot of resources and reduce the consensus effi-
ciency to a certain extent.

In response to the above problems, the MPC shard in
AMC is designed specifically to generate unbiased random
numbers. The adopted coin-tossing protocol can guaran-
tee output when most participants are honest. With a
reliable source of random numbers, participants directly
use the random numbers and their public key addresses as
the input of the hash function, and the result obtained de-
termines the shard to which they belong. Since the com-
puting power requirement is removed, malicious nodes
can generate multiple false identities to enter any shard.
Therefore, AMC uses PoS to prevent Sybil attacks and
stipulates that only participants who have paid enough
deposits can join the consensus. In this way, AMC guar-
antees the randomness of sharding.

4.3 Double-spending Attack Prevention

Double-spending attacks must be achieved through
forks [16], but there is no fork in AMC. In a block creation
shard or the integration shard, assuming that a malicious
leader proposes two blocks A and B to be sent to different
stakeholders. The most extreme case is that for the honest
parties with 2/3 stake weights, A and B each get a third
of the vote, Since the malicious party’s stake is less than
1/3, even if the malicious party votes twice, the votes of
A and B cannot exceed 2/3 at the same time. Therefore,
there will be no forks. In AMC, the leader who proposes
multiple blocks or the stakeholders who conduct multiple
votes will be reported by other nodes, so any fork be-
havior will be punished. In some PoW-based blockchains
such as Bitcoin, because forks are inevitable, there is no
way to identify whether the fork is an attack or a natu-
ral occurrence, and it is impossible to hold accountable.
However, in AMC, a forked accountability system can be

established by node reporting to better protect the secu-
rity of the blockchain.

4.4 Long-range Attack Prevention

A long-range attack is also known as a long-distance
double-spending attack, which means that the attacker
starts to create a fork from a block far away in history.
This attack is mainly aimed at long-term offline or newly
joined nodes. When these nodes want to synchronize the
blockchain, there is no guarantee that the blocks they re-
ceive are from the main chain or the forked chain created
by malicious nodes because there is no trusted source.
The PoW mechanism follows the longest chain principle.
As long as the forked chain becomes the longest chain, it
will become the main chain, which also means that the
history of the blockchain is completely rewritten. There
is no problem of history rewriting in AMC. Because AMC
achieves strong consistency, each block on the chain is fi-
nalized. Even if a node is offline for a long time or a newly
added node mistakenly enters the fork chain, other nodes
will not leave the main chain, and over time, all nodes
will return to the main chain.

5 Experimental Evaluation

In this section, we conduct experiments to evaluate the
performance of AMC in terms of throughput, delay, and
scalability. There are two purposes of the experiments.
The first is to test whether the actual performance of
AMC is consistent with the theory. The change of
throughput and delay with the number of nodes is ob-
served. The second is to compare the performance of
AMC with other consensus protocols, including through-
put experiment and sharding delay experiment.

5.1 Experimental Environment and Pa-
rameter Settings

The experiments use the Docker virtualization technol-
ogy to build a multi-node environment of the blockchain.
Docker’s operating platform is installed in a DELL R320
server with Xeon E5 CPU,64G memory, and Ubuntu
14.04 OS. In this paper, 20 nodes are initially selected
for each experiment, and the experiment is divided into
10 groups. Each group adds 20 nodes in turn until it
reaches 200 nodes. We fix the number of nodes in each
shard to 4, so the number of shards also increases from 5
to 50 accordingly. All experimental data are the average
of 20 experimental results under the same parameters.

5.2 Analysis Test of AMC Performance

The performance of AMC is mainly evaluated from the
aspects of throughput and latency. In order to ensure the
consensus efficiency, the block size needs to be limited.
In the throughput experiment, we intend to illustrate the
trend of throughput with the number of nodes. In order

International Journal of Network Security(VDOI: 1816-3548-2021-00032) 10

to facilitate the simulation, the size of a microblock is set
to 2kB. Since the size of a contract transaction itself is
not fixed, and the specific number of transactions in each
block does not affect the change trend of the experimental
results, it is simply assumed that there are 3 transactions
in each microblock.

Figure 9 shows that the throughput of AMC increases
linearly with the number of nodes. Each slot in AMC
consists of a two-phase consensus. First, the block shards
generate microblocks in parallel and submit them to the
integration shard in the upper layer. The leader in the
integration shard validate all transactions of these mi-
croblocks and forms a final block. The more block cre-
ation shards in the lower layer, the more transactions the
leader has to process in batches. This brings about two
problems. One is that the leader takes more time to pro-
cess transactions; the other is that the integrated block
will be larger. After entering the voting process, the com-
munication delay caused by broadcasting the integrated
block will greatly affect the consensus speed. As a result,
the throughput in AMC cannot ideally increase almost
linearly with the number of shards.

Figure 9: AMC throughput experiment

Delay τ is defined as the time interval from transac-
tion submission to transaction on the blockchain. Since
time duration for leaders in block creation shards to re-
ceive and package transactions are very short and can
be ignored, the consensus delay in the experiment starts
after the leaders propose microblocks. When the consen-
sus of all the block creation shards is completed and the
microblocks are submitted to the integration shard, the
leader of the integration shard will verify the signatures in
all the microblocks and merge all the correct microblocks,
and then conduct the two-phase voting consensus.

The corresponding relationship between the AMC con-
sensus delay and the number of shards is shown in Fig-
ure 10. Since microblocks are generated in parallel in the
block creation shards, theoretically the consensus delay at
this phase is not much related to the number of shards.
However, the experimental results show that with the in-
crease of the number of shards, the consensus delay of the

Figure 10: AMC consensus delay experiment

block creation shards increases slightly. This is because
the delay calculation has to wait for all the block shards to
reach consensus before the first phase is considered to be
over. The consensus delay varies slightly from one shard
to another. The more shards, the greater the consensus
delay. However, the delay increase at this phase is very
limited because AMC applies a timeout mechanism. In-
dividual shards with very slow consensus will not affect
the consensus progress of the entire system. In the case of
the same number of shards, the consensus delay in the in-
tegration shard is greater than the consensus delay in the
block creation shards. This is because the consensus block
in the integration shard is the sum of all microblocks in
the block creation shards. When the number of shards in-
creases, the consensus delay of the integration shard also
increases, because the leader needs to verify more trans-
actions and signatures, and the block for consensus is also
larger.

5.3 Sharding Delay and Throughput
Comparison Experiment

Sharding delay refers to the time it takes to randomly
partition all participants into different consensus groups.
The experiment compares the sharding delay between the
proposed sharding method and the PoW-based sharding
method adopted by ELASTICO and Zilliqa.

The random number used in each epoch in AMC is
generated in the previous epoch. Since the MPC shard
runs in parallel with other shards, the process of gener-
ating random numbers does not affect the sharding de-
lay. AMC only partitions among stake nodes. At the
beginning of a new epoch, after all stake nodes obtain the
random number, each stake node first directly hashes its
own public key and the random number to determine its
own shard and determine other members in the shard, and
then the node requests to establish connections with other
members in the shard. The sharding process ends when
the members in the shard form a connected graph. The

International Journal of Network Security(VDOI: 1816-3548-2021-00032) 11

sharding delay of the MPC shard is the sum of the hash
calculation time and the node connection time. PoW-
based sharding can be performed in any node. First, a
node needs to calculate a random number that meets the
difficulty conditions, and determine its own shard accord-
ing to the lowest bits of the random number, and then all
nodes in the same shard are connected. Compared with
the time required to calculate a random number, the time
for a node to establish a connection is negligible, so this
section considers the PoW sharding delay to be the time
of calculating a random number.

Figure 11: Comparison of sharding delay between MPC
and PoW

The PoW and MPC sharding delays under different
numbers of shards are shown in Figure 11. With the in-
crease of the number of shards, the sharding delay based
on PoW fluctuates around 1800ms, and the sharding de-
lay of MPC is relatively stable. This is because the for-
mer is originally a probabilistic calculation. Under the
conditions of the same level of difficulty and the same
computing power, for different problems, the calculation
time of PoW is not fixed. For the latter, the sharding
delay is mainly spent on communication. In the case of
a relatively stable network, the time for establishing con-
nections between nodes in a shard is relatively fixed, and
the shards do not affect each other. The number of shards
will not have a large impact on the delay. In the figure,
when there are more shards, the delay increases slightly,
which is due to the difference between the sharding de-
lays between different shards. We take the longest delay
as the sharding delay.

As shown in Figure 11, when the number of shards
is the same, the time required for PoW-based sharding
is much greater than that in AMC. The sharding delay
based on PoW fluctuates within the range of 1.5-2.3s. The
value is not very large. That is because the calculation
difficulty of the experimental settings is relatively low. In
practice, the difficulty of sharding cannot be set too low,
otherwise the randomness of sharding will be reduced.
The sharding method in AMC can guarantee the ran-

domness of sharding without any additional conditions,
because the generation of random numbers is verifiable,
and a stakeholder cannot dominate the shard to which it
belongs. If a stakeholder wants to enter multiple shards,
it must change its identity and repay the deposit. If a
malicious node wants to form a scale in a certain shard,
it needs to invest a lot of capital costs. Therefore, the
sharding method in AMC is more efficient and more se-
cure than the PoW-based sharding.

Figure 12: Throughput comparison between AMC and
PoW

The throughput experiment compares the throughput
of AMC and PoW. PoW is chosen as the comparison ob-
ject because it is the most classic consensus algorithm in
public blockchains. It has good scalability and can ac-
commodate as many nodes as possible. The throughput
comparison result is shown in Figure 12. In the case of
the same number of nodes, the throughput of AMC is
much greater than that of PoW. This is because in or-
der to select block creators and prevent Sybil attacks,
PoW must spend a lot of time to calculate random num-
bers, while AMC uses deposits to prevent Sybil attacks.
The limited nodes in shards achieve consensus based on
voting, and the consensus efficiency is higher. With the
increase of the number of nodes, the number of AMC
shards also increases. Since each shard processes trans-
actions in parallel, the more shards there are, the more
transactions processed at the same time. Compared with
AMC, the throughput of PoW has remained stable. So
AMC presents better scalability.

6 Conclusion

This paper proposed the scalable PoS blockchain con-
sensus protocol AMC for resolving the problems of poor
sharding randomness and low consensus efficiency in the
existing blockchains based on sharding. AMC uses the
MPC protocol πrandom to generate a recognized random
number. Based on the random number, the nodes that

International Journal of Network Security(VDOI: 1816-3548-2021-00032) 12

submit the deposit are randomly assigned into different
shards. The entire sharding process completely removes
the requirement for computing power, reduces energy con-
sumption and improves security. πrandomis a multi-party
coin-tossing protocol with guaranteed output delivery. It
uses polynomials to share secrets. It includes a fast veri-
fication step. When the behavior of nodes is honest, the
complexity of the polynomial verification is O (1).

The shards in AMC include the MPC shard that ex-
ecutes πrandom, the block creation shards that generate
microblocks in parallel, and the integration shard that in-
tegrates all microblocks. AMC introduces a security de-
posit mechanism. Once the malicious behavior of mem-
bers in any shard is detected, they will face the penalty
of deducting the deposit. The improved Tendermint algo-
rithm is used in the block creation shards and integration
shard to achieve consensus. In addition, the leader elec-
tion mechanism in the Tendermint consensus algorithm
is improved. The follow-the-satoshi algorithm is used to
enhance the randomness of the leader election and avoid
the danger of the leader being attacked in advance. Ex-
perimental results showed that the throughput of AMC
increases with the increase of the number of nodes, and
the sharding time in AMC is much less than that based
on PoW.

Acknowledgments

This research was supported in part by the National Sci-
ence Foundation of China (grant number 61472139), and
National High-tech R&D Program of China (grant num-
ber SS2015AA020107).

References

[1] T. Alam, “A survey on the use of blockchain for the
internet of things,” International Journal of Elec-
tronics and Information Engineering, vol. 13, no. 3,
pp. 119-130, 2021.

[2] I. Bentov, A. Gabizon, A. Mizrahi, “Cryptocurren-
cies without proof of work,” in International Confer-
ence on Financial Cryptography and Data Security,
pp. 142-157, 2016.

[3] I. Bentov, C. Lee, A. Mizrahi, et al., “Proof of ac-
tivity: Extending bitcoin’s proof of work via proof of
stake Extended Abstract,” ACM Sigmetrics Perfor-
mance Evaluation Review, vol. 42, no. 3, pp. 34-37,
2014.

[4] V. Buterin, V. Griffith, “Casper the friendly finality
gadget,” Oct. 25, 2017. (https://arxiv.org/abs/
1710.09437)

[5] I. Cascudo, B. David, “SCRAPE: Scalable random-
ness attested by public entities,” in International
Conference on Applied Cryptography and Network
Security, pp. 537-556, 2017.

[6] B. David, P. Gaži, A. Kiayias, et al., “Ouroboros
Praos: An adaptively-secure, semi-synchronous

proof-of-stake blockchain,” in Annual International
Conference on the Theory and Applications of Cryp-
tographic Techniques, pp. 66-98, 2018.

[7] I. Eyal, A. E. Gencer, E. G. Sirer, R. van Re-
nesse, “Bitcoin-NG: A scalable blockchain protocol,”
in Proceedings of the 13th USENIX Conference on
Networked Systems Design and Implementation, pp.
45-59, 2016.

[8] R. Gennaro, M. O. Rabin, T. Rabin, “Simplified VSS
and fast-track multiparty computations with appli-
cations to threshold cryptography,” in Proceedings of
the 17th Annual ACM Symposium on Principles of
Distributed Computing, pp. 101-111, 1998.

[9] Y. Gilad, R. Hemo, S. Micali, G. Vlachos and N.
Zeldovich, “Algorand: Scaling byzantine agreements
for cryptocurrencies,” Proceedings of 26th Sympo-
sium Operating System, pp. 51-68, 2017.

[10] S. Heidarvand, J. L. Villar, “Public Verifiability from
pairings in secret sharing schemes,” in International
Workshop on Selected Areas in Cryptography, pp.
294-308, 2008.

[11] A. Kiayias, A. Russell, B. David, et al., “Ouroboros:
A provably secure proof-of-stake blockchain proto-
col,” in Annual International Cryptology Conference,
pp. 357-388, 2017.

[12] S. King, S. Nadal, “PPCoin: Peer-to-peer crypto-
currency with proof-of-stake,” Self-published pa-
per, Aug. 19, 2012. (https://peercoin.net/
whitepapers/peercoin-paper.pdf)

[13] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N.
Gailly, E. Syta, B. Ford, “OmniLedger: A secure
scale-out decentralized ledger via sharding,” Proceed-
ings of IEEE Symposium Security Privacy, pp. 583-
598, May 2018.

[14] J. Kwon, “Tendermint: Consensus without min-
ing,”, 2016. (https://tendermint.com/static/
docs/tendermint.pdf)

[15] J. Li, G. Kendall, R. John, “Computing nash equi-
libria and evolutionarily stable states of evolutionary
games,” IEEE Transactions on Evolutionary Com-
putation, vol. 20, no. 3, pp. 460-469, 2016.

[16] I. C. Lin, T. C. Liao, “A survey of blockchain secu-
rity issues and challenges,” International Journal of
Network Security, vol. 19, no. 5, pp. 653-659, 2017.

[17] L. Luu, V. Narayanan, K. Baweja, et al., “SCP: A
computationally-scalable Byzantine consensus pro-
tocol for blockchains,” Cryptology ePrint Archive,
2015. (http://pdfs.semanticscholar.org/2596/
03d8d1c2a6d439eb8fa5038659a94aac08e1.pdf)

[18] L. Luu, V. Narayanan, C. Zheng, et al., “A secure
sharding protocol for open blockchains,” in Proceed-
ings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 17-30, 2016.

[19] D. T. Manning, J. E. Taylor, J. E. Wilen, “General
equilibrium tragedy of the commons,” Environmen-
tal & Resource Economics, vol. 69, no. 4, pp. 1-27,
2018.

https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437
https://peercoin.net/whitepapers/peercoin-paper.pdf
https://peercoin.net/whitepapers/peercoin-paper.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
http://pdfs.semanticscholar.org/2596/03d8d1c2a6d439eb8fa5038659a94aac08e1.pdf
http://pdfs.semanticscholar.org/2596/03d8d1c2a6d439eb8fa5038659a94aac08e1.pdf

International Journal of Network Security(VDOI: 1816-3548-2021-00032) 13

[20] S. Micali, M. Rabin, S. Vadhan, “Verifiable random
functions,” in 40th Annual Symposium on Founda-
tions of Computer Science, pp. 120-130, 1999.

[21] S. Nakamoto, “Bitcoin: A peer-to-peer electronic
cash system,” Decentralized Business Review, 21260,
2008.

[22] Z. Nylira, “Proposer selection procedure in ten-
dermint,” Aug. 27, 2018. (https://github.com/
tendermint/tendermint/blob/master/docs/

spec/reactors/consensus/proposer-selection)
[23] E. U. Opara, O. J. Dieli, “Enterprise cyber security

challenges to medium and large firms: An analysis,”
International Journal of Electronics and Information
Engineering, vol. 13, no. 2, pp. 77-85, 2021.

[24] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L.
Gasser, I. Khoffi, et al., “Scalable bias-resistant dis-
tributed randomness,” Proceedings of IEEE Sympo-
sium Security Privacy, pp. 444-460, May 2017.

[25] C. C. Yang, T. Y. Chang, M. S. Hwang, “A (t, n)
multi-secret sharing scheme,” Applied Mathematics
& Computation, vol. 151, no. 2, pp. 483-490, 2004.

[26] C. Yue, Z. Xie, M. Zhang, “Analysis of indexing
structures for immutable data,” in 2020 ACM SIG-
MOD International Conference on Management of
Data, pp. 14-19, 2020.

[27] The ZILLIQA Team, The ZILLIQA Techni-
cal Whitepaper, Aug. 10, 2017. (https://docs.
zilliqa.com/whitepaper.pdf)

Biography

WANG Mengnan born in 1996. She is a master’s stu-
dent of East China University of Science and Technology.
Her research interests include blockchain technology and
information security.

JIANG Yahui born in 1994. She received the M.S. de-
gree from East China University of Science and Technol-
ogy, Shanghai, China, in 2019. Her research interests in-
clude blockchain technology and information security.

HUANG Jianhua born in 1963, Ph.D., associate pro-
fessor. His main research interests include computer net-
works and information security and blockchain.

TANG Ruicong born in 1990, M.S. His main re-
search interests include blockchain and financial
information technology.

https://github.com/tendermint/tendermint/blob/master/docs/spec/reactors/consensus/proposer-selection
https://github.com/tendermint/tendermint/blob/master/docs/spec/reactors/consensus/proposer-selection
https://github.com/tendermint/tendermint/blob/master/docs/spec/reactors/consensus/proposer-selection
https://docs. zilliqa. com/whitepaper.pdf
https://docs. zilliqa. com/whitepaper.pdf

	Introduction
	Related Work
	AMC Consensus Agreement
	Settings and Assumptions of the System
	AMC Description
	Multiparty Coin-Tossing Protocol with Guaranteed Output Delivery
	Protocol Description
	Protocol Security Analysis

	Consensus in Shards
	Leader Election
	Consensus Process in Block Creation Shards
	Consensus in Integration Shard

	Reduction Strategies and Deposit Redemption Strategies

	Security Analysis
	Guaranteed Output of the Multiparty Coin-Tossing Protocol
	Sharding Randomness
	Double-spending Attack Prevention
	Long-range Attack Prevention

	Experimental Evaluation
	Experimental Environment and Parameter Settings
	Analysis Test of AMC Performance
	Sharding Delay and Throughput Comparison Experiment

	Conclusion
	REFERENCES

