
International Journal of Network Security(VDOI: 1816-3548-2024-00002) 1

An APT Attack Detection Method Based on
eBPF and Transformer

Rixuan Qiu1,2, Hao Luo1, Sitong Jing3, Xinxiu Li1, and Yuancheng Li1

(Corresponding author: Yuancheng Li)

School of Control and Computer Engineering, North China Electric Power University1

No. 2 Beinong Road, Changping District, Beijing, China

Information & Telecommunication Branch of State Grid Jiangxi Electric Power Supply Co., Ltd.2

No. 7077 Changdong Avenue, High-tech Zone, Nanchang, Jiangxi Province

PowerChina Jiangxi Electric Power Engineering Co., Ltd.3

No. 426, Jingdong Avenue, Qingshanhu District, Nanchang City, Jiangxi Province

Email: ncepua@163.com

(Received Oct. 21, 2023; Revised and Accepted May 20, 2024; First Online July 30, 2024)

Abstract

Advanced persistent threats (APTs) are a type of attack
that uses advanced techniques to launch long-term and
targeted network attacks against specific entities. APTs
can exploit system vulnerabilities and use sophisticated
and stealthy methods to evade detection by traditional
means. This paper proposes an APT attack detection
system based on eBPF and Transformer to address this
challenge. The system leverages eBPF to efficiently col-
lect network traffic feature data from the bottom layer
of the Linux kernel network stack and then applies a
Transformer-based deep learning model to identify APT
attacks. The paper conducts experiments in a simulated
network environment and compares the performance of
the system with existing attack detection methods. The
results show that the system achieves a recognition ac-
curacy of 96.5%, has high operational efficiency, and can
effectively detect APT attacks in network systems, pro-
viding a new solution to cope with such attacks.

Keywords: APT Attack Detection; eBPF; Transformer

1 Introduction

Advanced Persistent Threats (APTs) are typically orches-
trated by large enterprises, sovereign states, and affili-
ated entities with the primary motive of political or eco-
nomic gains, specifically targeting a particular organiza-
tion or institution. These attacks are characterized by
their long-term objectives, as they aim to infiltrate the
entire system rather than focusing on short-term inter-
ests. APTs exhibit traits such as extended activity cy-
cles, extensive concealment, and significant destructive
potential. In many cases, the victims of APT attacks
remain unaware of the intrusion until after the dam-

age has occurred. Common targets of APT attacks in-
clude multinational corporations, international organiza-
tions, and government departments. Notably, critical in-
frastructures such as electric power and energy facilities,
which play a vital role in national defense and public wel-
fare, are among the primary targets susceptible to APT
attacks [2, 4, 6, 7, 10,12,13,16,18,21].

The kernel’s packet filter, known as the CMU/Stanford
Packet Filter (CSPF), was initially proposed by Mogul
and others [19]. This system offers a packet filtering
mechanism within user space. Subsequently, the Berkeley
Packet Filter (BPF) was introduced by Steven McCanne
and Van Jacobson at the Usenix conference in 1993 [15].
BPF’s main concept involves capturing network packets
at the link layer within the operating system’s network
stack, filtering the packets, and delivering the filtered data
to the relevant application for processing. Unlike CSPF,
which relies on a memory stack mechanism, BPF utilizes
registers and employs a non-shared cache model for each
process, resulting in improved performance during packet
filtering. BPF’s introduction led to the development of
numerous related applications, such as the widely used
network debugging and traffic analysis tool tcpdump, and
the pivotal network data analysis library function libpcap,
both of which employ BPF instructions. BPF has become
an integral component of underlying development.

However, BPF has limitations that hinder its further
expansion in application scenarios. For instance, due to
its design based on Reduced Instruction Set Computing
(RISC), BPF registers are generally 32-bit and cannot
fully utilize the capabilities of modern 64-bit CPU regis-
ters. In 2014, Alexei Starovoitov made improvements to
the BPF instruction set, introducing the extended Berke-
ley Packet Filter (eBPF) [1, 3, 5, 8, 9, 11, 14, 17, 20]. One
significant change was the support for 64-bit register op-
erations, expanding the number of registers from 2 to 10.



International Journal of Network Security(VDOI: 1816-3548-2024-00002) 2

Another important feature introduced was just-in-time
(JIT) compilation, allowing binary code injection into the
kernel at runtime. These enhancements not only broad-
ened the usage scenarios for eBPF but also significantly
improved performance. eBPF was first introduced in ver-
sion 3.18 of the Linux Kernel and has found widespread
applications in networking, kernel debugging, and opti-
mization.

Given eBPF’s excellent filtering capabilities, its study
in network applications holds significant importance. The
core idea in eBPF network applications involves forward-
ing filtered data packets to other applications for process-
ing, thereby reducing the system overhead caused by a
large influx of packets into the network protocol stack. By
employing appropriate algorithms and solutions, eBPF
can further advance the prevention of DDoS attacks and
intrusion prevention systems, contributing to enhanced
network security.

This research paper leverages the distinctive attributes
of eBPF and employs a Transformer-based approach to
present and advance an APT attack detection method
specifically designed for Linux networks. Firstly, the
method captures comprehensive network traffic informa-
tion within the Linux kernel network stack, encompass-
ing crucial details such as network request types, IP data-
gram headers, TCP segment headers, and UDP user data-
gram headers. Subsequently, a classification model is con-
structed using a Transformer neural network to conduct
an in-depth analysis of the accumulated data, facilitating
the identification of potential APT attacks. The primary
objectives of this study are outlined as follows:

Initially, leveraging eBPF and its associated technolo-
gies, a tool is developed to capture network traffic data at
the lowest level of the Linux kernel network stack. This
tool enables the meticulous and cost-efficient extraction of
network traffic data from the Linux kernel, subsequently
transferring it to the relevant program interface in user
mode for utilization.

Furthermore, a highly efficient detection module is con-
structed to process the extracted kernel data. This mod-
ule utilizes a deep learning detection model based on the
Transformer architecture, which, when integrated with
the network traffic data extraction tool powered by eBPF,
establishes a novel system for detecting abnormal network
traffic.

In summary, this method can be broadly categorized
into two primary components: the data acquisition mod-
ule and the analysis and detection module. The data
acquisition module is responsible for gathering and pre-
processing data during the operation of the Linux system
kernel, while the analysis and detection module is em-
ployed for data training, analysis, and APT attack detec-
tion. Further details are provided below:

2 System Design and Implemen-
tation

APT Attack Detection Using eBPF and Transformer
This chapter presents the system design and imple-

mentation. The system consists of two components: data
collection and processing, and data analysis. The system
uses eBPF to collect network traffic data and the Trans-
former to analyze the data and detect APT attacks. The
system logic and data flow are illustrated in Figure 1.

Figure 1: Logic and data flow

The system operates in two modules. The first module
is the data acquisition module, which runs on the Linux
kernel and uses the eBPF virtual machine and related
programs. This module collects network traffic data and
sleeps for 10 seconds between each collection. The second
module is the attack detection module, which receives the
data from the first module, processes it, feeds it into a
classification model, and predicts and classifies the data
based on the model. The system then outputs the results
and returns to the data acquisition module. The system
alternates between these two modules periodically. The
following will provide a detailed introduction to these two
modules.

3 Data Acquisition Module

3.1 eBPF

The history of eBPF (extended Berkeley Packet Filter)
technology can be traced back to its predecessor, BPF
(Berkeley Packet Filter). Initially, BPF was developed
as a network packet filtering technology implemented in
Unix systems through the kernel’s virtual machine. As
time passed, BPF was expanded to include system trac-
ing and performance analysis capabilities, leading to its
implementation in the Linux kernel. Throughout this evo-
lution, BPF gradually transformed into a highly flexible
and powerful virtual machine technology, culminating in
the development of eBPF.

eBPF, an extension of BPF, specifically targets the
Linux kernel, enabling dynamic modification of kernel be-
havior at runtime by executing custom BPF programs
within the kernel. Brendan Gregg proposed eBPF in 2014



International Journal of Network Security(VDOI: 1816-3548-2024-00002) 3

intending to broaden the scope of BPF to encompass var-
ious applications, including high-performance packet fil-
tering, dynamic tracing, container security, and service
monitoring. Compared to traditional BPF, eBPF intro-
duces numerous new features and optimizations, support-
ing different program types such as user space and kernel
space programs. Moreover, eBPF allows safe loading and
unloading of programs at runtime.

At the core of eBPF technology lies the compilation
of specific code into binary bytecode, referred to as an
eBPF program. These programs can then be executed
in the kernel and intercepted by hook functions, enabling
monitoring, filtering, processing, and forwarding of sys-
tem calls, network data packets, and events. The key
advantage of eBPF is that it can operate in the kernel
space safely and efficiently without necessitating modifi-
cations to the kernel source code or recompilation. This
flexibility empowers eBPF to monitor and control kernel
behaviors such as data filtering, security auditing, and
performance analysis in a scalable manner.

The flexibility and scalability of eBPF programs are
made possible by just-in-time compilation technology,
which converts BPF bytecode into native machine code.
This approach allows eBPF programs to dynamically gen-
erate and optimize code at runtime, adapting to varying
kernel behaviors and environments.

While eBPF technology allows for the collection of ker-
nel operating data through the placement of observation
points within Linux kernel functions, its practical appli-
cation can be complex. It involves a series of actions such
as code writing, kernel loading, result data retrieval, un-
loading, and exiting, which can make data retrieval from
the kernel space cumbersome. Consequently, a new gen-
eration of eBPF-based tools has emerged in various do-
mains, including networking, security, application config-
uration/tracing, and performance troubleshooting. These
tools operate independently of existing kernel functional-
ity while maintaining execution efficiency and security,
actively modifying runtime behavior in specific scenarios.
Among these tools, BCC holds a fundamental and pivotal
role.

3.2 BCC

BCC (BPF Compiler Collection) is an open-source toolkit
that offers a comprehensive range of robust tools and
libraries for effectively working with eBPF (extended
Berkeley Packet Filter) programs. Its primary objective
is to streamline the development, debugging, and anal-
ysis of eBPF-based applications across various domains,
including networking, performance monitoring, and ker-
nel tracing. The BCC toolkit consists of a collection of
high-level frontends and libraries that enable developers
to write eBPF programs using familiar programming lan-
guages such as C, Python, and Lua. It provides an intu-
itive interface that simplifies the compilation and loading
of eBPF programs into the kernel, enabling users to fully
harness the capabilities of eBPF for tasks such as network

analysis, system monitoring, and troubleshooting.
One prominent aspect of BCC is its extensive reper-

toire of pre-built tools and utilities. These tools cater to
a wide array of use cases, encompassing packet filtering,
network tracing, performance profiling, and kernel func-
tion tracing. Leveraging eBPF programs, BCC tools facil-
itate the capture and analysis of network packets, mon-
itoring of system events, and diagnosis of performance
issues, all without the need for intrusive instrumentation
or kernel modifications.

In essence, BCC catalyzes simplifying eBPF develop-
ment, empowering users to leverage the potential of eBPF
for efficient and flexible system monitoring, analysis, and
troubleshooting endeavors.

3.3 Sysdig

Sysdig is a comprehensive system monitoring, analysis,
and troubleshooting tool that offers open-source univer-
sal system visibility with native container support. While
the Linux platform already provides several tools for sys-
tem performance analysis, such as strace, tcpdump, htop,
iftop, lsof, and netstat, as well as various logging and
monitoring tools, Sysdig stands out due to its exceptional
integration, power, and flexibility.

3.4 Module Design

The data collection module implemented in this method
utilizes Sysdig for data acquisition. Initially, Sysdig is
deployed within the Linux kernel container, after which
the sysdig command is executed via the command line
interface to observe the system’s present status and ac-
tivities. By employing various filters and output formats,
traffic data is obtained. Additionally, the BCC toolset is
employed to invoke the compiler, thus converting Python
code into eBPF bytecode. Through the aid of relevant
helper functions, the eBPF storage data structure map
is accessed, allowing for mapping to the corresponding
Python data structure. Consequently, the data acquired
through the eBPF approach can be fed into the deep
learning module developed in Python. The specific struc-
ture is illustrated in the accompanying Figure 2.

The process begins by leveraging XDP technology to
attach the eBPF program to the Linux kernel network
stack. Once the network card collects the data packet
and places it into the kernel buffer, the XDP program re-
trieves the pointer and length of the data packet from the
kernel buffer. This information is encapsulated as a ”ctx”
pair, providing access to and manipulation of the content
and metadata of the data packet through the ”ctx” object.
Additionally, the program utilizes pointers to indicate the
starting and ending addresses of the region where the Eth-
ernet frame, passed from the device driver layer, is stored.
By employing the structure that represents the Ethernet
frame’s header, the program sequentially unpacks the net-
work traffic, traversing from the Ethernet frame to the IP
data packet, and subsequently to the TCP /UDP data



International Journal of Network Security(VDOI: 1816-3548-2024-00002) 4

Figure 2: Schematic diagram of system operation logic

Table 1: Feature details
Feature Value Type Description
prot type Computational The most frequent protocol of packets in a unit of time
src bytes Count The average number of bytes from the source host to the destination host
dst bytes Count The average number of bytes from the destination host to the source host
flag count Computational The number of packets with the SYN, ACK, PSH, URG, and RST flags set to 1
src ip count Count The number of distinct source IP addresses.
pkt length Count The average length of packets.
pkt count Count The number of packets in a unit of time (used for calculating the rate).

tcp pktt cnt Count The number of TCP packets
tcp sport cnt Count The number of source ports in TCP packets
tcp dport cnt Count The number of destination ports in TCP packets
tcp fflag cnt Count The number of TCP packets with the FIN flag set to 1

packet, allowing for the extraction of the data layer by
layer.

Subsequently, standard network attack analysis tech-
niques are employed to derive features from the captured
network traffic. This approach follows the methodology
proposed by Karimazad, and the extracted feature details
are presented in Table 1.

4 Attack Detection Module

4.1 Transformer

The present article incorporates elements of the Trans-
former model, necessitating a brief introduction. The
Transformer model, renowned for its ability to enhance
training efficiency through the employment of attention
mechanisms, stands as a pioneer in leveraging this ap-
proach in deep learning models. It comprises two distinct
modules, namely the encoder and decoder, enabling effec-
tive handling of lengthy textual challenges. The Trans-
former model’s exceptional performance has extended its
applications beyond natural language processing, finding
widespread utilization in the realm of computer vision as
well.

4.2 Attention Mechanism

The attention mechanism serves as a pivotal component
within the Transformer model, facilitating the extraction
of vector relationships through the computation of weight
matrices. Its specific implementation involves the conver-
sion of input word vectors into a feature vector denoted
as Z.

Q = X ×WQ

K = X ×WK

V = X ×WV

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

In this context, the input vector sequence is denoted as
X, while WQ, WK , WV represents a randomly initialized
matrix, and dk signifies the vector dimension. The weight
matrices Q, K, and V correspond to the Query, Key, and
Value, respectively. By considering the embedding vec-
tor as a query vector alongside multiple key-value pairs,
distinct weights are attained through individual compu-
tations and subsequently applied to the corresponding
value. This mechanism, known as self-attention, derives
the weight matrix directly from the embedding vector it-
self. The attention mechanism conducts diverse weight
calculations based on contextual information, assigning
higher weights to significant words and lower weights to



International Journal of Network Security(VDOI: 1816-3548-2024-00002) 5

Figure 3: encoder blocks of Transformer

Figure 4: APT attack detection process

less significant ones, thereby encapsulating the mutual re-
lationships between words within the obtained weight vec-
tor. Consequently, the attention mechanism effectively
captures the attributes of lengthy text sequences while
preserving their semantic information.

4.3 Model Structure

This approach utilizes multiple encoder blocks from the
Transformer model for data training. The distinguishing
characteristic of the Transformer model lies in its utiliza-
tion of the attention mechanism. This mechanism incor-
porates the Q, K, and V matrices to compute weights,
which are then applied to the sum operation to generate
the output of self-attention. This process effectively ex-
tracts data features. The specific structure is illustrated
in Figure 3.

4.4 Process of Attack Detection

Utilizing the aforementioned model, the designed process
for APT attack detection, as depicted in Figure 4, is as
follows.

Initially, internal data containing APT attacks, gath-
ered from the Linux kernel, is annotated based on their
distinguishing characteristics. Subsequently, the data un-
dergoes preprocessing to transform it into feature vec-
tor format, which is then utilized for training the model.
Through the training process, the model’s parameters are
updated based on the prediction outcomes, aiming to en-
hance accuracy and achieve effective APT attack detec-
tion.

5 Experiment

To assess the efficacy of the technique, we will conduct
an experiment aimed at replicating a real-world network
environment. The experiment entails generating various
types and intensities of attack traffic while comparing dif-
ferent detection solutions. Key metrics such as perfor-
mance, real-time capabilities, and accuracy will be em-
ployed to evaluate the prototype system. To ensure the
smooth execution of the experiments, it is essential to
have the requisite hardware resources and establish a suit-
able experimental environment. We will utilize a total of
five servers, out of which two will function as web ap-
plication servers. These servers will be configured with
identical specifications, including Intel(R) Core(TM) i7-
12700F processors, CentOS 7 64-bit operating system,
and appropriate web application and system monitoring
tools. Both the prototype system from this study and
other comparable detection solutions will be individually
installed. The remaining three servers will be designated
as DDoS attack servers and will simulate HTTP DDoS
attacks. These servers will run on Windows Server 2019
and will be equipped with the PyLoris attack tool. The
five servers will operate on a separate local area network
(LAN).

5.1 Experiment Specific Settings

To evaluate the performance of the Transformer-based
detection prototype system proposed in this paper, we
conducted a series of experiments with the following set-
tings. We used five servers, a LAN environment, a Py-
Loris attack tool, and a Snort system. We deployed the
prototype system and the Snort system on two Web ap-



International Journal of Network Security(VDOI: 1816-3548-2024-00002) 6

plication servers, respectively, and verified that they were
configured correctly and running normally. We deployed
the PyLoris tool on three DDoS attack servers and set
different attack parameters to simulate various types and
intensities of HTTP DDoS attacks. We also ran a simu-
lation program on a client host to mimic the normal user
access to the Web application server.

We launched HTTP DDoS attacks in stages according
to the experimental design. In each stage, we used one
DDoS attack server to initiate a specified type and inten-
sity of attack, and observed how the prototype system and
the Snort system detected and defended against it. Mean-
while, we started the client host that simulated normal
user access under different attack scenarios and recorded
whether the prototype system and the Snort system mis-
classified them as attacks or not. We also recorded the
success rate of normal user access.

5.2 Comprehensive Evaluation Experi-
ment Based on Snort

Snort is a network intrusion detection and prevention sys-
tem (NIDS/NIPS) that monitors and analyzes network
traffic in real-time, and detects and alerts on malicious
packets based on predefined rules. Snort can operate in
three modes: as a packet sniffer, a packet logger, or a
full-fledged NIDS/NIPS. Snort is open source and free to
use for both individuals and organizations. Snort’s rules
are categorized into two types: community rules and sub-
scription rules. Community rules are developed by the
Snort community and quality tested by the Cisco Talos
team. They are freely available to all users. Subscription
rules are developed, tested, and approved by the Cisco
Talos team. They are only accessible to paid subscribers
in real-time. Snort also supports Open App ID, a fea-
ture that enables application identification and control.
Therefore, we choose Snort for comparative experiments.

To configure Snort for HTTP DDoS detection and pre-
vention, we need to use a set of rules that can identify and
block potential network attacks. We use some common
HTTP DDoS rules that are based on the characteristics
of attack traffic, such as request rate, request type, source
IP address, and so on. Table 2 shows some examples of
these rules. For instance, we can create rules to detect
excessive request rates within a certain time window, or
to detect abnormal User-Agent identifiers. After defining
the rules, we apply them to Snort and start the system to
monitor network traffic. When Snort matches traffic with
our rules, it generates alerts and takes predefined defen-
sive actions. These actions may include blocking attack
source IP addresses and limiting request rates. By mon-
itoring and responding in real-time, Snort can effectively
protect the system and network resources from HTTP
DDoS attacks.

We followed the same experimental settings and proce-
dures as the comprehensive evaluation experiment of the
prototype system proposed in this paper but used Snort as
a comparable HTTP DDoS detection and prevention so-

lution. We configured Snort with a set of rules for HTTP
DDoS attacks and monitored network traffic in real-time.
We observed how Snort detected and defended against
HTTP DDoS attacks of different types and intensities.
After the experiment, we analyzed Snort’s performance
in terms of detection accuracy, resource consumption, de-
tection delay, and attack resistance, and evaluated its ap-
plicability in real-world scenarios.

5.3 Comprehensive Evaluation Experi-
ment

In this section, we conduct a comprehensive evaluation
experiment on the APT attack detection prototype sys-
tem based on eBPF and Transformer algorithms, which is
proposed in this article. We adjust the classification con-
ditions according to the experimental results to obtain
the best performance of the prototype system in detect-
ing and defending against different types or intensities of
DDOS attacks and normal user access.

Before the comprehensive evaluation, we need to build
a complete prototype system and train the attack detec-
tion model. We divide the data set into two parts: one
is the normal user network traffic data set, which is la-
beled to remove the non-normal user data; the other is
the HTTP DDOS attack traffic data set, which is filtered
to retain only the HTTP DDOS data. We merge the two
parts of the data and train the model after data clean-
ing and feature extraction processes. We test the trained
classifier model and load it into the kernel through the
classifier loader. We fine-tune the three classification con-
ditions during the testing process to achieve optimal re-
sults, including lower server resource usage and higher
classification accuracy.

We start the experiment after ensuring that all hard-
ware resources and the experimental environment are
ready, including five servers, LAN environment, attack
tools, and Snort system. We deploy the prototype system
and Snort system on two web application servers respec-
tively and verify that they can run normally with correct
configuration parameters. We deploy the PyLoris tool
on three APT attack servers and set the attack parame-
ters to simulate different types and strengths of attacks
during the experiment. We run a pre-written simulation
program on the client host to simulate the behavior of
a normal user accessing the web application server. We
launch an HTTP DDOS attack in stages according to the
experimental design. In each stage, we use a DDOS attack
server to launch an attack of a specified type and intensity,
and then observe the detection and defense performance
of the prototype system and Snort system. We also start
a client host that simulates a normal user and observes
whether the prototype system and Snort system misclas-
sify the normal user access behavior under different attack
scenarios. We record the success rate and response time
of normal user access. Finally, we use perf-tools to collect
data on various evaluation indicators in real-time, includ-
ing detection accuracy, resource consumption, detection



International Journal of Network Security(VDOI: 1816-3548-2024-00002) 7

Table 2: Part of the snort rule table
Rule Description Content

Detecting Slow Http Connection Attacks

alert tcp any any->any 80(msg:”Possible HTTP DDoS
Slowloris attack detected”;flow:to server;content:
”GET”;nocase;content:”HTTP/1.1”;nocase;
detection filter:track by src,count 50,seconds 120;
classtype:attempted-dos; sid:1000001;rev:1;)

Detect Abnormal Http Request Methods

alert tcp any any->any 80(msg:”Possible HTTP DDoS
Abnormal HTTP Request Method”;flow:established;
content:”—0d 0a—”;within:10; pcre:
”/ˆ[\x20-\x26\x28-\x7e]+\x20/”;classtype:
attempted-dos; sid:1000002;rev:1;)

Detect A Large Number Of Identical
User-Agent Requests In A Short Period Of Time

alert tcp any any->any 80(msg:”Possible HTTP DDoS High
rate of identical User-Agent requests” ; flow:established;
content: ”User-Agent—3a—” ; nocase;threshold: type
threshold, track by src,count 50, seconds 5;
classtype:attempted-dos; sid:1000003;rev:1;)

delay, and anti-DDoS attack capabilities, to ensure the
accuracy and reliability of data collection.

After the experiment is completed, we obtain the
measurement indicators through the following calculation
methods:

1) Detection accuracy: We define True Positive (TP)
as correctly identified attacks, True Negative (TN)
as correctly identified normal traffic, False Positive
(FP) as false positive normal traffic, and False Nega-
tive (FN) as false negative attacks. We calculate the
detection accuracy (Accuracy) as follows: Accuracy
= (TP + TN) / (TP + TN + FP + FN).

2) Resource consumption: We monitor the CPU usage
and memory usage of the prototype system regu-
larly during the experiment. We calculate the av-
erage CPU usage and memory usage as follows: Av-
erage CPU usage = Sum of CPU usage / Number
of measurements; Average memory usage = Sum of
memory usage / Number of measurements. We can
obtain this data using performance monitoring tools
provided by the operating system or third-party mon-
itoring tools.

3) Detection delay: We record the time (T1) when each
attack starts and the time (T2) when the system suc-
cessfully detects the attack and takes action. We cal-
culate the detection delay as follows: Delay = T2 -
T1. We average all the delays to obtain the average
detection delay.

4) Defense capabilities: We record the number of suc-
cessful attempts and the total number of attempts by
normal users to access the web application server dur-
ing the attack. We calculate the access success rate
as follows: Success rate = Number of successes / To-
tal number of attempts. We also record the response
time of normal users accessing the web application
server. We calculate the average response time as

follows: Average response time = Sum of response
times / Number of successes.

5.4 Analysis of The Experimental Re-
sults

We conducted the same comprehensive evaluation exper-
iment on the prototype system of this article and Snort,
and collected and analyzed the experimental data. In this
section, we compare the performance of the two systems
in detail based on various evaluation indicators. Figure 6
shows the detection accuracy of different types of HTTP
DDOS attacks by the prototype system and Snort. The
experimental results show that both systems have high
accuracy in detecting different types of HTTP DDOS at-
tacks. However, the prototype system outperforms Snort
in three types of attacks: GET/POST type slow message
body attacks, asymmetric requests, and large payload
POST requests. Especially for asymmetric requests, the
prototype system achieves an accuracy of 96.30%, which
is significantly higher than Snort’s 82.80%. On the other
hand, for HTTP flood-type attacks, the prototype sys-
tem has a slightly lower accuracy of 97.90%, compared
to Snort’s 98.00%. Overall, the prototype system demon-
strates high accuracy in detecting most types of attacks.

Figure 5 shows the comparison of detection accuracy
between the prototype system and Snort under differ-
ent types of APT attacks. The prototype system has
higher detection accuracy than Snort in general, which
can be attributed to the Transformer algorithm used by
the prototype system. Unlike Snort’s rule-based detec-
tion method, which relies on pre-defined rule sets and may
fail to recognize certain types of attacks, the Transformer
algorithm can effectively extract attack information and
adapt to emerging attack characteristics through learn-
ing and analysis of historical data. Therefore, the Trans-
former algorithm can make more accurate judgments on
attacks and reduce false positives or false negatives. In



International Journal of Network Security(VDOI: 1816-3548-2024-00002) 8

Figure 5: Different Types Of Attack Detection Accuracy

summary, the experiments in this article demonstrate that
the HTTP DDOS detection method proposed in this ar-
ticle is more efficient than the rule-based Snort, as evi-
denced by the higher detection accuracy of the prototype
system in various HTTP DDOS attack scenarios.

Another measurement indicator is the detection la-
tency of different types of HTTP DDOS attacks. The
lower the detection latency, the faster the alarm and re-
sponse processing speed can be achieved. Figure 5 illus-
trates the detection latency of different types of HTTP
DDOS attacks by the prototype system and Snort. Ac-
cording to the experimental results, the prototype system
has lower detection latency than Snort in dealing with
different types of HTTP DDOS attacks.

Figure 6: The detection latency of different types of
HTTP DDOS attacks

6 Conclusions

This paper presents an attack detection method based on
eBPF and Transformer for advanced persistent threats
(APTs) in the network and designs a prototype system

to conduct a series of experimental evaluations. The pa-
per compares the performance of the prototype system
with the rule-based Snort system in terms of detection
accuracy, detection latency, defense capability, and user
experience. The experimental results show that the pro-
totype system outperforms Snort in all aspects, achieving
significantly higher detection accuracy, lower detection la-
tency, higher normal user access success rate, and lower
response time. The paper concludes that the proposed
method can effectively detect and defend against APTs
and is superior to existing methods, providing a feasible
solution in the field of network security.

Acknowledgments

This work was supported in part by the State Grid Jiangxi
Information & Telecommunication Company Project
“Research on key technologies for edge access security
in the new power system intelligent IoT system” under
Grant SGJXXT00DDJS2310143. The authors gratefully
acknowledge the anonymous reviewers for their valuable
comments.

References

[1] Tahir Alyas, Sikandar Ali, and Habib Ullah Khan,
“Container performance and vulnerability manage-
ment for container security using docker engine,”
2022.

[2] Sidahmed Benabderrahmane, Ghita Berrada, James
Cheney, and Petko Valtchev, “A rule mining-
based advanced persistent threats detection system,”
CoRR, vol. abs/2105.10053, 2021.

[3] Kelly Brady, Seung Moon, Tuan Nguyen, and Joel
Coffman, “Docker container security in cloud com-
puting,” in 2020 10th Annual Computing and Com-
munication Workshop and Conference (CCWC),
pp. 0975–0980. IEEE, 2020.

[4] Jun Dong, Dongran Liu, Xihao Dou, Bo Li, Shiyao
Lv, Yuzheng Jiang, and Tongtao Ma, “Key issues
and technical applications in the study of power mar-
kets as the system adapts to the new power system
in china,” Sustainability, vol. 13, no. 23, p. 13409,
2021.

[5] Ana Duarte and Nuno Antunes, “An empirical study
of docker vulnerabilities and of static code analysis
applicability,” in 2018 Eighth Latin-American Sym-
posium on Dependable Computing (LADC), pp. 27–
36. IEEE, 2018.

[6] Xueyuan Han, Thomas Pasquier, Adam Bates,
James Mickens, and Margo Seltzer, “Unicorn: Run-
time provenance-based detector for advanced per-
sistent threats,” arXiv preprint arXiv:2001.01525,
2020.

[7] Katharina Hofer-Schmitz, Ulrike Kleb, and Branka
Stojanović, “The influences of feature sets on the de-



International Journal of Network Security(VDOI: 1816-3548-2024-00002) 9

tection of advanced persistent threats,” Electronics,
vol. 10, no. 6, p. 704, 2021.

[8] Omar Javed and Salman Toor, “An evaluation of
container security vulnerability detection tools,” in
Proceedings of the 2021 5th International Conference
on Cloud and Big Data Computing, pp. 95–101, 2021.

[9] Omar Javed and Salman Toor, “Understanding the
quality of container security vulnerability detection
tools,” arXiv preprint arXiv:2101.03844, 2021.

[10] George Karantzas and Constantinos Patsakis, “An
empirical assessment of endpoint detection and re-
sponse systems against advanced persistent threats
attack vectors,” Journal of Cybersecurity and Pri-
vacy, vol. 1, no. 3, pp. 387–421, 2021.

[11] Fang Li, Network Security Evaluation and Optimal
Active Defense based on Attack and Defense Game
Model. 2023.

[12] Jinxin Liu, Yu Shen, Murat Simsek, Burak Kantarci,
Hussein T Mouftah, Mehran Bagheri, and Petar Dju-
kic, “A new realistic benchmark for advanced persis-
tent threats in network traffic,” IEEE Networking
Letters, vol. 4, no. 3, pp. 162–166, 2022.

[13] Xiangde Luo, Minhao Hu, Tao Song, Guotai Wang,
and Shaoting Zhang, “Semi-supervised medical im-
age segmentation via cross teaching between cnn and
transformer,” arXiv e-prints, 2021.

[14] Akalanka Mailewa, Susan Mengel, Lisa Gittner, and
Hafiz Khan, “Mechanisms and techniques to en-
hance the security of big data analytic framework
with mongodb and linux containers,” Array, vol. 15,
p. 100236, 2022.

[15] Antony Martin, Simone Raponi, Théo Combe, and
Roberto Di Pietro, “Docker ecosystem–vulnerability
analysis,” Computer Communications, vol. 122,
pp. 30–43, 2018.

[16] Zijie Meng, Xinlei Cai, Jinzhou Zhu, and Xu Lin,
“Study on the influence of extreme weather on power
grid operation under new power system,” in Pro-
ceedings of the 2021 4th International Conference on
Algorithms, Computing and Artificial Intelligence,
pp. 1–6, 2021.

[17] Anupama Mishra, Neena Gupta, and Brij. B. B.
Gupta, “Defensive mechanism against ddos attack
based on feature selection and multi-classifier al-
gorithms,” Telecommunication systems: Modeling,
Analysis, Design and Management, 2023.

[18] Y. Pan, T. Zhou, J. Zhu, and Z. Zeng, “Construc-
tion of apt attack semantic rules based on att & ck,”
Journal of Cyber Security, vol. 6, no. 3, pp. 77–90,
2021.

[19] Elochukwu Ukwandu, Mohamed Amine Ben-Farah,
Hanan Hindy, Miroslav Bures, Robert Atkinson,
Christos Tachtatzis, Ivan Andonovic, and Xavier
Bellekens, “Cyber-security challenges in aviation in-
dustry: A review of current and future trends,” In-
formation, vol. 13, no. 3, 2022.

[20] Marcos A. M. Vieira, Matheus S. Castanho, Racyus
D. G. Paćıfico, Elerson R. S. Santos, and Luiz F. M.
Vieira, “Fast packet processing with ebpf and xdp:
Concepts, code, challenges, and applications,” ACM
Computing Surveys, vol. 53, no. 1, pp. 1–36, 2020.

[21] Satya Prakash Yadav, Subiya Zaidi, Annu Mishra,
and Vibhash Yadav, “Survey on machine learning in
speech emotion recognition and vision systems using
a recurrent neural network (rnn),” Archives of com-
putational methods in engineering: State of the art
reviews, no. 3, p. 29, 2022.

Biography

Ri-xuan Qiu works for the Information communication
Branch of State Grid Jiangxi Electric Power Co., LTD.
E-mail: qiurixuanwork@163.com.

Hao Luo was born in Oct. 1998. He is a master
student at North China Electric Power University. His
major research field is information security. E-mail:
13021490107@163.com.

Si-tong Jing works for the PowerChina Jiangxi Electric
Power Engineering Co., LTD. E-mail: aurrucy@126.com.

Xin-xiu Li was born in 2000.She is a master student
at North China Electric Power University. Her ma-
jor research field is information security. E-mail: lix-
inxiu@163.com.

Yuan-cheng Li was born in Aug. 1970. He is a profes-
sor and a supervisor of Doctoral student at North China
Electric Power University. His major research field is in-
formation security and privacy preserving, cryptography
and blockchain, artificial intelligence and security. E-mail:
ncepua@163.com.


	Introduction
	System Design and Implementation
	Data Acquisition Module
	eBPF
	BCC
	Sysdig
	Module Design

	Attack Detection Module
	Transformer
	Attention Mechanism
	Model Structure
	Process of Attack Detection

	Experiment
	Experiment Specific Settings
	Comprehensive Evaluation Experiment Based on Snort
	Comprehensive Evaluation Experiment
	Analysis of The Experimental Results

	Conclusions
	REFERENCES

