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Abstract

Digital signatures are used to confirm the identity of the sender of a digital message or a
document. There are many digital signature algorithms in the world. But the need for a better
signature scheme is not fulfilled yet. In this paper, a novel digital signature algorithm is presented
with proving the efficiency against some kind of cyber attacks. The proposed signature scheme
is based on the prime factorization and on a simple, interesting property in Mathematics. The
mathematical property is the sum of 2 ancillary odd numbers is a multiple of 4. The significance of
the scheme is the signature is not generated from the message, directly. The new signature scheme
is very simple and fast. But, the scheme is strong as the RSA signatures in security and the scheme
is faster than the RSA in some cases. We can also use hash functions with the proposed signature
scheme to strong the security.
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1 Introduction

After introducing the idea “digital signature” by Diffie and Hellman [7], the research field of digital
signatures has fulfilled many important goals in the digital world. A digital signature plays a very
important role in proving the identity of the correct entity in E-Transactions such as E-Commerce and
E-Voting. In traditional document, the signature is a part of the document. But, when someone sends
a digital document, the message and the signature send separately. In conventional signature, there is
a one- to-many relationship between a signature and documents. In digital signature, there is a one-
to-one relationship between a signature and a document. That is each digital document needs a new
signature. As the definition of digital signature, it is a cryptographic primitive which is fundamental in
authentication, authorization and non-repudiation [2].

The rest of the paper is organized as follows: Section 2 describes some definitions which are important
to understand the introduced digital signature scheme. After the preliminaries, in Section 3, Related
Works with RSA Digital Signature Scheme, DSS and ECDSS are discussed briefly. The new signature
scheme with two examples is presented in Section 4. The Section 5 discusses the security analysis of
the introduced signature scheme. The computational complexity is presented in Section 6.
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2 Preliminaries

In this section, we give some definitions, theorem, and attacks.

Definition 1. The set of integers {0, 1, 2, 3, · · · , n − 1} is defined as the integers mod n and denoted
by Zn.

Definition 2. The multiplicative group of Zn is Z∗
n = {a ∈ Zn| gcd(a, n) = 1}.

Definition 3. A structure (R,+, ·) is a ring if R is a non-empty set and + and · are binary operations:

+ : R×R→ R, (a, b) 7→ a+ b;

· : R×R→ R, (a, b) 7→ a.b.

Such that

Addition: (R,+) is an Abelian group, that is

Associativity: For all a, b ∈ R we have a+ (b+ c) = (a+ b) + c;

Zero Element: There exists 0 ∈ R such that for all a ∈ R we have a+ 0 = 0 + a = a;

Inverses: For any a ∈ R there exists −a ∈ R such that a+ (−a) = (−a) + a = 0;

Commutativity: For all a, b ∈ R we have a+ b = b+ a.

Multiplication:

Associativity: For all a, b ∈ R we have a.(b.c) = (a.b).c;

Addition and Multiplication together:

for all a, b ∈ R we have a.(b+ c) = a.b+ a.c and (a+ b).c = a.c+ b.c;

Definition 4. A secure digital signature scheme is a triple, S = (KeyGeneration, Sign, V erify) of
algorithms which are defined as follows:

KeyGeneration takes as an input the unary representation of the security parameter (1n) and outputs
a private signing key sk and a public verification key pk.

Sign takes as input a signing key sk, message m and outputs a signature s.

Verify is a deterministic algorithm, which is input of a public key and a message-signature pair (m,s)
outputs 1(accept) or 0 (reject).

S is correct if for all public key and private key pairs generated by KeyGeneration, then, Pr[V erify(pk,m, Sign(sk,m)) =
1] = 1.

Theorem 1. (Euler’s 1st Theorem) If a and n are coprime then ,aφ(n) mod n ≡ 1

Theorem 2. (Euler’s 2nd Theorem) If n = p × q, a < n, k is an integer,then ak×φ(n)+1 mod n ≡ a;
Here it is removed that a and n are coprime.

Attack 1. (Key-Only Attack) The adversary knows only the signer’s public key. In this attack model,
the adversary needs to create signer’s signature to convince verifier that the message is coming from the
signer (correct entity).

Attack 2. (Message Attacks) The adversary is able to examine signatures corresponding either to
known or chosen messages.



I.J. of Electronics and Information Engineering, Vol.11, No.2, PP.61-72, Dec. 2019 (DOI: 10.6636/IJEIE.201912 11(2).02) 63

3 Related Works

There are many digital signature schemes have been introduced by researchers in recent decades. Ac-
cording to Diffie and Hellman scheme [7], signer’s signature for a message m depends on m and on
signer’s secret key. Anyone can only verify the validity of the signature using the signer’s public key.
But, they can’t create signer’s signature. El-Gamal introduced a practical signature scheme in 1985
[8]. The signature scheme based on the discrete logarithm problem and there are two signatures in
the signing process. Hence, in the verifying process, two functions are compared for the verification.
Miller and Kobitz [9], [10], introduced elliptic curve scheme with greater security than schemes based
on factorization problem and discrete logarithm problem.

S. Goldwasser, S. Micali and R. L. Rivest introduced a secure signature scheme against to adaptive
chosen message attacks [1] in 1988. The scheme is stronger in security and is based on the factorization
problem and “claw-free” permutation pairs. A digital signature scheme which is not trap-door type was
introduced by Goldwasser, Micali and Yao [3] in 1983. Recently, Naor, Shenhav and Wool introduced a
signature scheme using Fractal Merkle tree tranversal [13]. Their signature scheme is an implementation
of Merkle’s one-time signature scheme [14]. A signature scheme with message recovery using knapsack
based elliptic curve cryptography was introduced by Ramasamy and Prabakar [22]. The scheme is
secure from private key derivation, forged signature generation and digital message recovery.

Here we discuss three signature schemes, RSA Digital Signature Scheme, DSS and ECDSS further
more.

3.1 RSA Digital Signature Scheme [6]

RSA Digital Signature Scheme is the most used practical signature scheme. The core of the RSA
digital signature scheme is the RSA cryptosystem idea (RSA public key cryptosystem was introduced
by R.L. Rivest, A. Shamir and L. Adleman in 1978). Here, public and private keys are generated by
the sender. The main disadvantage of RSA signature scheme is, the scheme is not sufficiently fast for
many applications. The scheme is as follows:

1) Two large prime numbers are generated. Let p and q.

2) Modulus n is generated by multiplying p and q.

3) The totient of n is φ(n) = (p− 1).(q − 1) is calculated.

4) Private Key: A prime number d is selected. Where 3 ≤ d ≤ φ(n) and gcd[d, φ(n)] = 1; gcd means
greatest common divisor.

Public Key: The inverse of d with respect to mod φ(n) is calculated. The sender uses his
private key d to create a signature for message m.

The signature: s ≡ md mod n.

5) The message m and the signature s are sent.

6) The receiver uses to verify the signature by comparing m and se mod n.

In security, there is a serious attack on the RSA signatures “Chosen – Message Attack”. This attack
uses the multiplicative property to break the scheme.
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3.2 Digital Signature Standard (DSS)

Digital Signature Standard is based on the discrete logarithm problem and was adopted by the National
Institute of Standards and Technology (NIST). It is an efficient variant of the El-Gamal Signature
Scheme with some ideas from the Schnorr signature scheme.

1) Choose a prime p between 512 and 1024 bits in length. The number of bits in p must be a multiple
of 64.

2) Again choose a prime number q with 160 bits of length as q divides (p− 1).

3) Uses two multiplication groups < Z∗
p ,× > and < Z∗

q ,× >. The second multiplication group is a
subgroup of the first multiplication group.

4) Create e1 to be the qth root of 1 mod p. Choose a primitive element e0 ∈ Zp and calculate

e1 = e
(p−1)/q
0 mod p.

5) Choose a private key d and calculate e2 = ed1. The public key is (e1, e2, p, q).

6) Select a random integer r ∈ [1, q−1]. (Need a new value for r in each time to sign a new message).

7) Calculate the first signature s1 = (er1 mod p) mod q. This signature does not depend on the
message.

8) Create a digest of message h(M).

9) Calculate the second signature s2 = (h(M) + ds1)r−1 mod q.

10) Send (M, s1, s2).

11) To verify the signatures, first check to see if 0 < s1 < q and 0 < s2 < q.

12) Calculate a digest of M using the same hash algorithm used by sender.

13) Calculate V = [(e
h(M)s−1

2
1 e

s1s
−1
2

2 ) mod p] mod q.

14) If s1 is congruent to V, the signature is valid.

If anyone uses same p for DSS and RSA, DSS is faster than RSA Signatures in computation.

3.3 Elliptic Curve Digital Signature Scheme (ECDSS)

ECDSS is the Digital Signature Algorithm (DSA) based on elliptic curves. The scheme is as follows:

1) Choose an elliptic curve Ep(a, b) with a prime number p.

2) Choose another prime number q.

3) Choose any integer d as the private key.

4) Choose a point on the curve, e1(. . . , . . .).

5) Calculate another point on the curve, e2(. . . , . . .) = d× e1(. . . , . . .).

6) Now the public key is (a, b, p, q, e1, e2).
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7) A random integer r ∈ [1, q − 1].

8) Select a third point on the curve P (u, v) = r × e1(. . . , . . .).

9) Calculate the first signature s1 by using the first coordinates of (u, v).s1 = u mod q.

10) Create a digest of message h(M).

11) Calculate the second signature s2 = (h(M) + ds1)r−1 mod q.

12) Send (M, s1, s2).

13) In verification, create two intermediate results A and B.

A = h(M)s−1
2 mod q

B = s−1
2 .s1 mod q.

14) Now reconstruct the third point T (x, y) = A× e1(. . . , . . .) +B × e2(. . . , . . .).

15) If x = s1 mod q , the signature is valid.

The signing and verifying processes of the scheme are fast.

4 Proposed Digital Signature Scheme

In this section, a new digital signature scheme is presented. Consider we have to sign a message m.
Here, I get the message in numerical form. But, we can get any standard representation for a large
message. In this signature scheme, the public key is (e,n). e is any large prime number less than n
and r is a variable which is chosen by the signer. r does not depend on the message and can choose
different r for same message. But, we should select r as the sum of r and m is a multiple of 4. Then
find two ancillary odd numbers which are the sum is equal to the sum of r and m. The significance
of the proposed signature scheme is the using of a very simple behavior of odd numbers. That is, the
sum of any two ancillary odd numbers is a multiple of 4. The private key d is the inverse of e modulo
φ(n). Then the small one of two ancillary odd numbers by raising it to the dth power modulo n is the
signature for the message m. Now we send the message m,r and the signature for the verification.
In the verification, the verifier has the message m, r and the signature. Firstly, the signature by raising
it to the eth power modulo n is calculated. Now the verifier has the small odd number of the two
ancillary odd numbers. Then the verifier can get the other odd number. If the sum of these ancillary
odd numbers is equal to the sum of the message and r, the signature is correct and can accept the
message m. Otherwise the message m is rejected.

The signing process is as follows:

1) Choose two distinct primes p and q.

2) Compute n = p.q.

3) Compute φ(n) = (p− 1)(q − 1).

4) Select any prime number d such that gcd(d, φ(n) = 1 as the private key of the sender.

5) Calculate the public key e, such that e.d mod φ(n) ≡ 1.

6) Select any integer r such that (m+ r) mod 4 ≡ 0.
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7) Now find two ancillary odd numbers such that their sum is equal to m+ r

a+ (a+ 2) = m+ r;

a is odd.

8) Now the signature is s ≡ ad mod n.

9) Now send (r, s) for the message m.

The verification process is as follows:

1) Calculate se mod n = a.

2) Check whether a+ (a+ 2) = m+ r or not.

3) If a+ (a+ 2) = m+ r, the signature is valid. Otherwise the signature is not valid.

4.1 Key Generation Algorithm

The key generation of the introduced signature scheme is same as the RSA signature’s key generation
(See Algorithm 1).

Algorithm 1 New Signature Scheme Key Generation

1: {
2: select: two large primes p and q such that p 6= q
3: n← p× q
4: φ(n)← (p− 1)× (q − 1)
5: select e such that 1 < e < φ(n) and e is coprime to φ(n).
6: d← e−1 mod n
7: PublicKey ← (e, n)
8: PrivateKey ← (d)
9: return PublicKey and PrivateKey

10: }

4.2 Signing and Verifying

Signing: The signer creates a signature using her private key, s = ad mod n and sends the message
m, the signature s and r to the verifier.

Verifying: The verifier receives m, s and r. Then, the verifier applies signer’s public key to the
signature as follows:

se mod n ≡ (ad)e mod n ≡ a mod n.

If a+ (a+ 2) = m+ r, the signature is correct and can accept the message (See the Figure-1).

Example 1.

The signing process:

1) Let p = 11 and q = 13;
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Figure 1: The signing and the verification process

2) n = p.q = 143;

3) φ(n) = 120;

4) Select d = 7 as the private key;

5) Determine the public key, e = 103 by calculating 7.e mod 120 ≡ 1;

6) Let the message m = 23. Select r = 5. Here, (23 + 5) mod 4 ≡ 0;

7) Now the two ancillary odd numbers are 13 and 15;

8) The signature is s ≡ 137 mod 143 ≡ 117;

9) Now send (5, 117).

The verification process:
Calculate se mod n ≡ 117103 mod 143 ≡ 13:

13 + 15 = 28 = 23 + 5 = m+ r.

The signature is correct.

Example 2.

The signing process:

1) Let p = 83 and q = 91;

2) n = p.q = 7553;

3) φ(n) = 7380;

4) Select d = 71 as the private key;
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5) Determine the public key, e = 1871 by calculating 71.e mod 7380 ≡ 1;

6) Let the message is m = 42. Select r = 50. Here, (42 + 50) mod 4 ≡ 0;

7) Now the two ancillary odd numbers are 45 and 47;

8) The signature is s ≡ 4571 mod 7553 ≡ 2273;

9) Now send (50, 2273).

The verification process:
Calculate se mod n ≡ 22731871 mod 7553 ≡ 45

45 + 47 = 92 = 42 + 50 = m+ r.

The signature is correct.

5 Security

5.1 Key-Only Attack

The proposed signature scheme is invulnerable for Key-Only Attack as difficult to solve the discrete
logarithm problem.

5.2 Chosen-Message Attack

Assume an adversary sends to sign a message (m1) to the signer. The signer creates a signature (s1)
for the message (m1).

s1 ≡ (a1)d mod n

2a1 + 2 = m1 + r1.

Then the signer sends (s1, r1) to the adversary. Now, the adversary is able to find a1. But, he can’t
create (a1)d mod n. Because of the adversary does not know the secret key d.

Then the adversary sends to sign another message m2 to the signer and gets (s2, r2). Here,

s2 ≡ (a2)d mod n

2a2 + 2 = m2 + r2.

Now, the adversary can find a2. But he can’t create (a2)d mod n.
In this case, the adversary can ask to sign number of messages from the signer. But, the selection of

variables a1, a2, r1 and r2 are changed message by message. Therefore, it is difficult to apply Chosen-
Message-Attack to the introduced signature scheme.

5.3 The Introduced Signature Scheme on the Message Digest

A strong cryptographic hash function can build up a high security for the introduced signature scheme.
For an instance, if the hash function is pre-image resistant, the signature scheme is strong in security.
In fact, hash functions are also speed up the encryption and decryption processes.

In the message digest Case 1 (See the Figure 2), the hashing function is used for only the message
m. In the message digest Case 2 (See the Figure 3), the hashing function is used for both the message
m and the small one of the two ancillary odd numbers a.
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6 Computational Complexity

The computational complexity for Key generations of the new scheme same as RSA signatures. The
comparison of computational complexities for the encryption and the decryption of the introduced
signature scheme and the RSA signature scheme as Table 1.

Table 1: Comparisons of computational complexities

7 Conclusion

Here we have introduced a simple and practical digital signature scheme, faster than RSA signatures in
some cases. The modulus of the introduced scheme is same as the RSA signatures. But, the signature
does not depend directly on the message and it is not created from the message. We can also use any
standard security model with the new signature scheme to increase the security.
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