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DAbstract

Lin and Wu [IEE Proc. Comput. Digit. Tech. 146 (1999) 264] have proposed an

efficient ðt; nÞ threshold verifiable multi-secret sharing (VMSS) scheme based on the

factorization problem and the discrete logarithm modulo a large composite problem. In

their scheme, the dealer can arbitrarily give any set of multiple secrets to be shared, and

only one reusable secret shadow is to be kept by every participant. On the other hand,

they have claimed that their scheme can provide an efficient solution to the cheating

problems between the dealer and any participant. However, He and Wu [IEE Proc.

Comput. Digit. Tech. 148 (2001) 139] have shown that Lin and Wu’s scheme is in fact

insecure against a cheating participant. In this paper, we shall try to improve the

security of Lin and Wu’s scheme while providing more efficient performance than other

VMSS schemes in terms of computational complexity.
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1. Introduction

The first ðt; nÞ threshold secret sharing schemes, based on the Lagrange

interpolating polynomial and linear project geometry, were proposed by Sha-

mir [20] and Blakley [2], respectively. In their schemes, the dealer first splits the

secret into n different pieces, called shadows, which are given to the participants

over a secret channel. At least t or more participants can use their shadows to

collaboratively reconstruct the secret, but only t � 1 or fewer participants will

not be enough. However, there are several common drawbacks in both secret-

sharing schemes [2,20] as follows:

(1) Only one secret can be shared during one secret sharing process [11].

(2) Once the secret has been reconstructed, it is required that the dealer redis-

35 tributes a fresh shadow over a secret channel to every participant [16].

(3) A dishonest dealer may distribute a fake shadow to a certain participant,

37 and then that participant would subsequently never obtain the true secret

38 [8].

(4) A malicious participant may provide a fake shadow to other participants,
40 which makes the malicious participant the only one who gets to reconstruct

41 the true secret [23].

To overcome the drawback in (1), some efficient ðt; nÞ multi-secret sharing

schemes have been proposed [7,10,11] to share multiple secrets. To deal with

the drawback in (2), Jakson et al. [16] have further classified multi-secret

sharing scheme into two types: one-time-use scheme and multi-use scheme. The

difference between one-time-use scheme and multi-use scheme is that the sha-
dow kept by each participant in a multi-use scheme is reusable after secret

reconstruction while the shadow kept by each participant in a one-time-use

scheme is not. To redistribute shadows is a very costly process with respect to

both time and resources. However, both types of schemes still have the com-

mon drawbacks in (3) and (4).

To do away with the drawback in (3), Chor et al. [8] have proposed a ver-

ifiable secret sharing (VSS) scheme to detect cheating by a dishonest dealer. In

Chor et al.’s VSS scheme [8], every participant can verify the validity of his/her
own shadow distributed by the dealer, which allows the honest participants to

ensure that the secret to be reconstructed is unique. However, the drawback in

(4) still exists in their scheme. Years ago, Stadler [21] provided a solution to the

problems in (3) and (4). Stadler’s VSS scheme [21] is not only robust against the

cheating by the dealer [9] but also against the cheating by any participant

[3,4,17,22,23]. Nevertheless, both VSS schemes can only deal with one secret in

one secret sharing process.

Taking all the above problems into consideration, Harn [10] has proposed a
ðt; nÞ threshold verifiable multi-secret sharing (VMSS) scheme which can detect
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both the cheating by the dealer and that by any participant. In Harn’s scheme

[10], every participant keeps only one reusable shadow (which makes it a multi-
use scheme) distributed by the dealer. When reconstructing a secret, each

participant first computes a subshadow from his/her own shadow. If t or more

subshadows are released, the secret can be reconstructed. The other multiple

secrets can be reconstructed the same way. However, Lin and Wu [18] have

pointed out that Harn’s scheme still suffers from the problems as follows:

• Every participant should perform n!=ððn� tÞ! � t!Þmodule exponentiations to

verify the validity of his/her own shadow against the cheating by the dealer.
• The subshadows generated by the participants are not implicitly verifiable

against the cheating by a participant. In the secret reconstruction process,

every participant runs an interactive verification protocol with each of the

other cooperators to verify that their released subshadows are valid.

• Only predetermined or computed secrets can be shared. This restricts the

dealer from dynamically adding a new secret to be shared among those n
participants.

Chen et al. [6] have proposed an alternative ðt; nÞ VSS scheme to avoid the

disadvantages in Harn’s scheme [10]. However, Lin and Wu [18] have also

pointed out that Chen et al.’s scheme is inefficient because the dealer has to

record all participants’ the shadows and take 2n modulo exponentiations to

compute an n-dimensional verification vector for each shard secret. This n-
dimensional verification vector is used to prevent any cheating by the partici-

pants in the secret reconstruction process. In order to avoid the disadvantages

in Harn’s scheme [10] and to reduce the computational complexity in Chen et
al.’s scheme [6], Lin and Wu [18] have further proposed a ðt; nÞ threshold

VMSS scheme based on the intractability of factorization and the problem of

discrete logarithm module a composite [1]. However, He and Wu [12] have

indicated that a malicious participant can provide a fake subshadow to cheat

other honest participants. Hence, it would turn out that only the malicious

participant could reconstruct the secret.

With this paper, we shall improve Lin and Wu’s scheme [18] and prevent the

cheating by any malicious participant. The improved VSS scheme will still
maintain the advantages of Harn’s [10] and Chen et al.’s schemes [6] while

reducing the computational complexity. The improved scheme will have the

following features [18]:

1. The dealer can arbitrarily give any set of multiple secrets for sharing, and

only one shadow, which is reusable, should be kept by each participant. Fur-

thermore, the number of public values published by the dealer for recon-

structing every secret without cheating participants can be further
minimized.
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2. Every participant can detect any cheating by the dealer and verify his/her

own shadow.
3. Every participant can detect the cheating by any other participant by using a

non-interactive verification protocol and verify his/her subshadow.

The remainder of our paper is organized as follows. In Section 2, we shall

propose our improved ðt; nÞ threshold VMSS scheme, which is an improvement

on Lin and Wu’s scheme. In Section 3, we shall mount several possible attacks

to demonstrate the security of our improved ðt; nÞ VMSS scheme. In Section 4,

we shall compare the performance of our improved ðt; nÞ VMSS scheme with
that of Chen et al.’s scheme. Finally, our conclusion will be in Section 5.
O
UN
CO

RR
EC
TE
D
PR
O2. Improved ðt; nÞ threshold VMSS scheme

In this section, we shall propose a new method that is an improvement on

Lin and Wu’s ðt; nÞ VMSS scheme [18]. Our new scheme can withstand He and

Wu’s attack (see [12,18] for more details). Our improved ðt; nÞ VMSS scheme is
also comprised of four phases: (1) initialization stage, (2) shadow generation

and verification stage, (3) credit ticket generation stage, and (4) subshadow

verification and secret reconstruction stage. The details of four stages are as

follows:

2.1. Initialization stage

The dealer (denoted as UD) first creates a public notice board (NB) which is
used for storing necessary public parameters. The participants can access those

parameters on the NB. The contents on the board can only be modified or

updated by UD. The parameters are defined by UD as follows: N denotes the

product of two large primes p and q, where p ¼ 2p0 þ 1 and q ¼ 2q0 þ 1, with

themselves prime; R is the product of p0 and q0; g is denotes a generator with

order R in ZN ; e and d separately denote the pubic and private keys in the RSA

algorithm [5,14,19], where e � d ¼ 1mod/ðnÞ. After generating these parame-

ters, UD puts fN ; g; eg on the NB and keeps fR; dg secret.

2.2. Shadow generation and verification stage

Let G ¼ fU1;U2; . . . ;Ung be a group of n participants and

S ¼ fS1; S2; . . . ; Smg be a set of m secrets. Every Ui has her/his identity

IDi ði ¼ 1; 2; . . . ; nÞ. UD performs the following steps:

Step 1. Randomly generate a polynomial f ðxÞ ¼ a0 þ a1xþ � � � þ at�1xt�1

modR, where each ak 2 ZR, and compute a check vector
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V ¼ ½V0; V1; . . . ; Vk�1� for each coefficient ak as
Vk ¼ gak modN for k ¼ 0; 1; . . . ; ðt � 1Þ; ð1Þ

and put V on the NB.

Step 2. Compute a secret shadow xi for every Ui 2 G as
RO
OF

xi ¼ f ðIDiÞ � p�1
i modR; ð2Þ

where

pi ¼
Y

Uk2G;Uk 6¼Ui

ðIDi � IDkÞmodR

and compute the associated yi ¼ gxi modN as this Ui’s public key to be

put on the NB.

Step 3. Distribute fyi ¼ gpi modN ; xig to every Ui 2 G over a secret channel.

When every Ui 2 G receives the secret shadow xi, he/she can check the

following equation to verify the validity of xi:
 P
ðgpiÞxi ¼

Yt�1

k¼0

ðVkÞðIDiÞk modN : ð3Þ
RE
CT
EDIf Eq. (3) does not hold, the secret shadow xi distributed by UD is not

valid.

2.3. Credit ticket generation stage

In this phase, UD performs the following steps to compute m credit tickets

C1;C2; . . . ;Cm for each secret S1; S2; . . . ; Sm 2 S.

Step 1. Randomly choose m distinct integers r1; r2; . . . ; rm 2 ZR for each secret

S1; S2; . . . ; Sm 2 S.
Step 2. Compute a credible ticket Cj and a value hj as
UN
CO

RCj ¼ grj�d modN ð4Þ

and

hj ¼ ðga0�rj�d modNÞ � Sj for j ¼ 1; 2; . . . ;m: ð5Þ

Then, the 3-tuple frj;Cj; hjg is put on the NB.

In addition, if UD wants to add a new secret Snew for sharing, he/she only

needs to generate a new 3-tuple frnew;Cnew; hnewg for Snew and put it on the NB

without interfering with the results generated in the previous phases.



166

167

168

169

170

172

173

175

176

177

179

181

182

183

184

185
186

187

188

190

191

6 T.-Y. Chang et al. / Appl. Math. Comput. xxx (2004) xxx–xxx

AMC 8869 No. of Pages 10, DTD=4.3.1

10 April 2004 Disk used
ARTICLE IN PRESS
2.4. Subshadow verification and secret reconstruction stage

Let W ðjW j ¼ t6 nÞ be any subset of t participants in G. Without loss of

generality, assume that t participants Ui 2 W cooperate to reconstruct a secret

Sj 2 S. Every Ui 2 W obtains the 3-tuple frj;Cj; hjg from the NB and uses his/

her secret shadow xi to compute a subshadow Aij as
Aij ¼ ðCjÞxi modN : ð6Þ
FThen, Ui releases Aij to the other cooperators in W . Any other cooperator in W
obtains Ui’s public key yi form the NB to verify the validity of Aij as
ðAijÞe ¼ ðyiÞrj modN : ð7Þ
O
OIf Eq. (7) does not hold, then they can stop this phase and announce that

cheating by Ui has been identified. If all Aij’s released by the t participants in W
are valid, every participant in W can reconstruct Sj as
 PRSj ¼ hj �

Y
Ui2W

ðAijÞDi modN

 !
; ð8Þ
where
EDDi ¼
Y

Uk2G;Uk 6¼Ui

 
� IDk

!
�

Y
Uk2G;Uk 62W

ðIDi

 
� IDkÞ

!
:

RE
CTThen, all the secrets S1; S2; . . . ; Sm 2 S can be reconstruct by performing this

phase repetitively.

In the rest of this section, we shall show the correctness of verifying the

secret shadow distributed by UD in Eq. (3), verifying the subshadow released by

any participant in Eq. (7), and the secret reconstruction in Eq. (8).
In the shadow generation and verification stage, any participant Ui 2 G can

verify the secret shadow xi distributed by UD in Eq. (3) as follows. According to

Eqs. (1) and (2), we can rewrite Eq. (3) as
NC
ORðgpiÞxi ¼ gpi �f ðIDiÞ�p�1
i modN

¼ gf ðIDiÞmodN

¼ g
Pt�1

k¼0
ak �ðIDiÞk modN

¼
Yt�1

k¼0

ðVkÞðIDiÞk modN :
UIn the subshadow verification and secret reconstruction stage, any cooper-

ator can verify the subshadow released by any Ui 2 W in Eq. (7) as follows.
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Assume that Ui is an honest participant who uses his/her shadow xi to compute

Aij in Eq. (6). According to Eqs. (4) and (6), we can rewrite Eq. (7) as
ðAijÞe ¼ ðCxi
j Þ

e
modN

¼ ðgrj�d�xiÞemodN

¼ grj�xi modN

¼ yrji modN :
FIn the subshadow verification and secret reconstruction stage, every par-

ticipant in W can reconstruct Si 2 S in Eq. (8) as follows. Assume that all the

Aij’s released by the t participants in W are valid. According to Eq. (5), we can

rewrite Eq. (8) as
D
PR
OOSj ¼ hj �

Y
Ui2W

ðAijÞDi modN

 !

¼ ðga0�rj�d modNÞ � Sj �
Y
Ui2W

ðAijÞDi modN

 !

¼ ðga0�rj�d modNÞ � Sj �
Y
Ui2W

ðCjÞxi�Di modN

 !

¼ ðga0�rj�d modNÞ � Sj � ðCjÞf ð0ÞmodN

¼ Sj:
 TE
NC
OR

RE
C3. Security analysis

The security of our proposed scheme is the same as that of Lin and Wu’s

scheme [18], which is based on factorization and discrete logarithm modulo a
composite problem. In the rest of this section, some possible attacks will be

raised and fought against to demonstrate the security of our scheme.

Attack 1. An adversary tries to reveal the participants’ secret shadows xi’s
from the known information.

(a) Known the equation yi ¼ gxi modN and Ui’s public key yi ði ¼ 1; 2; . . . ; nÞ
and the parameters g;N : It is as difficult as breaking the discrete logarithm

module a composite (DLMC) problem [1].
(b) Known the equation Aij ¼ ðCjÞxi ¼ grj�d�xi modN and Aij;Cj

ði ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;mÞ and the parameter N : As with Attack

1(a), the adversary should face the difficulty of the DLMC problem.
U
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Attack 2. A malicious participant who has obtained some previously recovered

secrets tries to reveal any remaining secret in S without the assistance of the
other t � 1 cooperators.

Known the equation hj ¼ ðga0�rj�d modNÞ � Sj and the check value

V0 ¼ ga0 modN and the 3-truple frj;Cj; hjg ðj ¼ 1; 2; . . . ;mÞ: Assume that the

malicious participant has recovered the secrets Sa 2 S and Sb 2 S with the other

t � 1 cooperators; in other words, he/she has the knowledge of the values

ga0�ra�d modN and ga0�rb�d modN . In order to disclose another secret Sc 2 S in Eq.

(5), the malicious participant has to first find out the value ga0�d modN and

multiply the exponent rc by it. He/she has to calculate the rath root of
ga0�ra�d modN or the rbth root of ga0�rb�d modN to obtain the value ga0�d modN .

However, the difficulty of extracting the rath root of ga0�ra�d modN or the rbth
root of ga0�rb�d modN is equivalent to that of breaking the factorization (FAC)

problem [1,15] in the RSA scheme [19]. On the other hand, if the malicious

participant finds Cc ¼ Ca � CbmodN , he/she can easily derive t � 1 verified Aic’s

from Aia’s and Aib’s as
 R

D
PAic ¼ Aia � AibmodN

¼ ðCaÞxi � ðCbÞxi modN

¼ gra�d�xi � grb�d�xi modN

¼ ðgd�xi �ðraþrbÞmodNÞ:
TEHowever, the integers rj’s are randomly chosen by UD for computing distinct

Cj’s. The malicious participant still cannot succeed in this attack. (For exam-

ple, UD chooses rj’s as 3j.)
RR
ECAttack 3. The dealer UD tries to distribute a fake shadow x0i to cheat partici-

pant Ui without being detected in Eq. (2).

The check vector V ¼ ½V0; V1; . . . ; Vk�1� in Eq. (1) has been published by UD

on the NB, and therefore f ðxÞ is unchangeable already. For this reason, any

fake shadow x0i 6¼ f ðIDiÞ � pi�1modR cannot pass the shadow verification in Eq.

(3).
UN
COAttack 4. A dishonest participant Ui in W tries to release a fake subshadow A0

ij

to cheat the other cooperators in W without being detected in Eq. (7). The

dishonest participant Ui should first find out UD’s private key d. Then, he/she
has to modify his/her public key yi or rj on the NB to pass Eq. (7). However,

retrieving d from fN ; eg is as difficult as breaking the RSA scheme [13,19].
Furthermore, the contents of the NB can only be modified or updated by UD.

Thus, the dishonest participant Ui cannot release a fake A0
ij subshadow to pass

Eq. (7).
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4. Performance analysis

In Lin and Wu’s paper, they have claimed that their scheme was more

efficient than Harn’s scheme [10] and Chen et al.’s scheme [6]. However, He and

Wu [12] showed that a malicious participant in Lin and Wu’s scheme could

provide a fake subshadow to deceive other honest participants. In Section 3, we

have demonstrated that our improved scheme can withstand such an attack.

Our improved scheme is even more efficient than Harn’s scheme [10] and Chen

et al.’s scheme because each participant has to run an interactive verification

protocol with each and every one of the other cooperators to verify their re-
leased subshadows in Harn’s scheme. That is inefficient. Here, we analyze the

number of modular exponentiations ðTexpÞ and compare ours with that of Chen

et al.’s scheme.

In Table 1, though the number of modular exponentiations employed to

guard against cheating by Ui (done by Ui) in our scheme is greater than that in

Chen et al.’s scheme [6], our scheme outperforms Chen et al.’s scheme in the

number of modular exponentiations against cheating by Ui (done by UD).

Moreover, 2n modular exponentiations are required by Chen et al.’s scheme to
guard against cheating by Ui (done by UD), which increases the number of

participants in the system. Generally speaking, our scheme has a more efficient

overall performance than Chen et al.’s scheme. In addition, the number of

public parameters published by the dealer for reconstructing a secret is only 3

in our scheme. In contrast, Chen et al.’s scheme need as many as nþ 2. For the

same reason, the number of public parameters increases the number of par-

ticipants in the system in Chen et al.’s scheme.
T

RR

EC5. Conclusion

In this article, we have proposed an improved ðt; nÞ VMSS scheme which is a

modified version of Lin and Wu’s scheme. Our scheme can successfully with-

stand He and Wu’s attack, and our security is based on factorization and

discrete logarithm modulo a composite problem. Though modifications have

been made, the original advantages are maintained.
UN
COTable 1

Comparison between our scheme and Chen et al.’s scheme

Chen et al.’s scheme Our scheme

Against cheating by UD (done by Ui) 2t Texp 2t Texp
Against cheating by Ui (done by Ui) ðt � 1ÞTexp ðt � 1Þ2Texp
Against cheating by Ui (done by UD) 2nTexp 2Texp
Public values published by UD for

reconstructing a secret

nþ 2 3
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